cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083356 Total area of all incongruent integer-sided rectangles of area <= n.

Original entry on oeis.org

0, 1, 3, 6, 14, 19, 31, 38, 54, 72, 92, 103, 139, 152, 180, 210, 258, 275, 329, 348, 408, 450, 494, 517, 613, 663, 715, 769, 853, 882, 1002, 1033, 1129, 1195, 1263, 1333, 1513, 1550, 1626, 1704, 1864, 1905, 2073, 2116, 2248, 2383, 2475, 2522, 2762, 2860
Offset: 0

Views

Author

Dean Hickerson, Apr 26 2003

Keywords

Examples

			a(5)=19, the rectangles being 1 X 1, 1 X 2, 1 X 3, 1 X 4, 1 X 5 and 2 X 2.
		

Crossrefs

Partial sums of A060872.

Programs

  • Mathematica
    a[n_] := Sum[r(r+Floor[n/r])(Floor[n/r]+1-r), {r, 1, Floor[Sqrt[n]]}]/2
  • Python
    from math import isqrt
    def A083356(n): return (k:=isqrt(n))*(k+1)*(2+4*k-3*k*(k+1))//24+sum(i*(m:=n//i)*(1+m)>>1 for i in range(1,k+1)) # Chai Wah Wu, Jul 11 2023

Formula

a(n) = Sum_{k=1..n} k*ceiling(d(k)/2), where d(k)=A000005(k) is the number of divisors of k.
a(n) = Sum_{r=1..floor(sqrt(n))} r*(r+floor(n/r))*(floor(n/r)+1-r)/2.
a(n) = ( A143127(n) + A000330(floor(sqrt(n))) ) / 2. - Max Alekseyev, Jan 31 2012
a(n) ~ n^2 * log(n) / 4
G.f.: x*f'(x)/(1 - x), where f(x) = Sum_{k>=1} x^k^2/(1 - x^k). - Ilya Gutkovskiy, Apr 12 2017