A083372 Least number having exactly two odd prime factors that differ by 2n.
15, 21, 55, 33, 39, 85, 51, 57, 115, 69, 203, 145, 87, 93, 259, 185, 111, 205, 123, 129, 235, 141, 371, 265, 159, 413, 295, 177, 183, 469, 335, 201, 355, 213, 219, 553, 395, 237, 415, 249, 623, 445, 267, 1313, 679, 485, 291, 505, 303, 309, 535, 321, 327, 565
Offset: 1
Keywords
Examples
We have a(4) = 33 because 33 = 3*11, with 11 - 3 = 2*4, the smallest number with this property. Others are 85 = 5*13, 209 = 11*19, 713 = 23*31, 1073 = 29*37, 3233 = 53*61, ...
Crossrefs
Cf. A046388.
Programs
-
Mathematica
f[n_] := Block[{p = 3}, While[ ! PrimeQ[p] || ! PrimeQ[p + 2n], p++ ]; p(p + 2n)]; Table[ f[n], {n, 1, 55}] Table[#(#+2n)&/@Select[Prime[Range[2,100]],PrimeQ[#+2n]&,1],{n,60}]// Flatten (* Harvey P. Dale, May 26 2018 *)
Extensions
Edited and extended by Robert G. Wilson v, Jun 07 2003
Comments