A083410 a(n) = A083385(n)/n.
1, 4, 22, 154, 1306, 12994, 148282, 1908274, 27333706, 431220034, 7428550042, 138737478994, 2792050329706, 60231133487074, 1386484468239802, 33921605427779314, 878976357571495306, 24046780495646314114, 692622345890928153562, 20950628198687114521234, 663992311200423614606506
Offset: 1
Keywords
Links
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, (m+1)!, m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0)/2: seq(a(n), n=1..23); # Alois P. Heinz, Feb 14 2025
-
Mathematica
a[n_] := (-1)^n (PolyLog[-n - 1, 2] - PolyLog[-n, 2])/8; Array[a, 21] (* Jean-François Alcover, Sep 10 2018, from A005649 *)
-
PARI
a(n)=if(n<0,0,n!*polcoeff(subst((1/(1-y)^2-1)/2,y,exp(x+x*O(x^n))-1),n))
Formula
E.g.f.: (1/(2-exp(x))^2-1)/2. - Michael Somos, Mar 04 2004
G.f.: 1/Q(0), where Q(k) = 1 - x*(3*k+4) - 2*x^2*(k+1)*(k+3)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
a(n) ~ n! * n / (8 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n) = Sum_{k=1..n} k * A090665(n,k). - Alois P. Heinz, Feb 20 2025
Comments