A083481 Squarefree part of the n-th oblong number.
2, 6, 3, 5, 30, 42, 14, 2, 10, 110, 33, 39, 182, 210, 15, 17, 34, 38, 95, 105, 462, 506, 138, 6, 26, 78, 21, 203, 870, 930, 62, 66, 1122, 1190, 35, 37, 1406, 1482, 390, 410, 1722, 1806, 473, 55, 230, 2162, 141, 3, 2, 102, 663, 689, 318, 330, 770, 798, 3306, 3422, 885
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..500
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
Programs
-
Maple
A083481 := proc(n) A007913(n)*A007913(n+1) ; end proc: seq( A083481(n),n=1..40) ; # R. J. Mathar, Mar 15 2023
-
Mathematica
sk[n_]:=Module[{k=1},While[!IntegerQ[Sqrt[n*k]],k++];k]; sk/@Table[n(n+1),{n,60}] (* Harvey P. Dale, Mar 28 2013 *)
-
PARI
a(n)=core(n*(n+1))
-
Python
from sympy.ntheory.factor_ import core def A083481(n): return core(n*(n+1)) # Chai Wah Wu, Mar 20 2023
Formula
a(n) = A007913(n*(n+1)). - R. J. Mathar, Nov 02 2011
Extensions
More terms from Benoit Cloitre, May 04 2003
Comments