A083487 Triangle read by rows: T(n,k) = 2*n*k + n + k (1 <= k <= n).
4, 7, 12, 10, 17, 24, 13, 22, 31, 40, 16, 27, 38, 49, 60, 19, 32, 45, 58, 71, 84, 22, 37, 52, 67, 82, 97, 112, 25, 42, 59, 76, 93, 110, 127, 144, 28, 47, 66, 85, 104, 123, 142, 161, 180, 31, 52, 73, 94, 115, 136, 157, 178, 199, 220, 34, 57, 80, 103, 126, 149, 172, 195, 218, 241, 264
Offset: 1
Examples
Triangle begins: 4; 7, 12; 10, 17, 24; 13, 22, 31, 40; 16, 27, 38, 49, 60; 19, 32, 45, 58, 71, 84; 22, 37, 52, 67, 82, 97, 112; 25, 42, 59, 76, 93, 110, 127, 144; 28, 47, 66, 85, 104, 123, 142, 161, 180;
Links
- Vincenzo Librandi, Rows n = 1..100, flattened
- Alain Kraus, Cours-Arithmétique et algèbre, 2016-2017, Université de Paris VI. See Exercice 6 p. 13.
- OEIS Wiki, Odd composites
Crossrefs
Programs
-
Magma
[(2*n*k + n + k): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Jun 01 2014
-
Mathematica
T[n_,k_]:= 2 n k + n + k; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Jun 01 2014 *)
-
Python
def T(r, c): return 2*r*c + r + c a = [T(r, c) for r in range(12) for c in range(1, r+1)] print(a) # Michael S. Branicky, Sep 07 2022
-
SageMath
flatten([[2*n*k +n +k for k in range(1,n+1)] for n in range(1,14)]) # G. C. Greubel, Oct 17 2023
Formula
From G. C. Greubel, Oct 17 2023: (Start)
T(n, 1) = A016777(n).
T(n, 2) = A016873(n).
T(n, 3) = A017017(n).
T(n, 4) = A017209(n).
T(n, 5) = A017449(n).
T(n, 6) = A186113(n).
T(n, n-1) = A056220(n).
T(n, n-2) = A090288(n-2).
T(n, n-3) = A271625(n-2).
T(n, n) = 4*A000217(n).
T(2*n, n) = A033954(n).
Sum_{k=1..n} T(n, k) = A162254(n).
Extensions
Edited by N. J. A. Sloane, Jul 23 2009
Name edited by Michael S. Branicky, Sep 07 2022
Comments