cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A083547 a(n) = sqrt(sqrt(phi(A083546(n)) * phi(1+A083546(n)))), the 4th root of product of totients of terms and 1+terms of A082788.

Original entry on oeis.org

1, 12, 24, 36, 36, 60, 60, 72, 80, 96, 120, 120, 120, 144, 144, 168, 180, 240, 264, 360, 360, 432, 480, 504, 480, 480, 720, 720, 720, 720, 840, 840, 864, 840, 840, 840, 840, 960, 900, 960, 960, 1080, 1260, 1224, 1320, 1320, 1440, 1440, 1320, 1440, 1440, 1728
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[x]; Do[s=Sqrt[Sqrt[f[n+1]*f[n]]]; If[IntegerQ[s], Print[s]], {n, 1, 1000000}]

Extensions

a(29)-a(52) from Amiram Eldar, Apr 09 2021

A083545 Numbers k such that the geometric mean of the Euler totient function of k and k+1 is an integer.

Original entry on oeis.org

1, 3, 15, 19, 95, 104, 125, 164, 194, 255, 259, 341, 491, 495, 504, 512, 513, 584, 591, 629, 679, 755, 775, 975, 1024, 1147, 1247, 1254, 1260, 1313, 1358, 1463, 1469, 1538, 1615, 1728, 1919, 1962, 1970, 2047, 2071, 2090, 2204, 2299, 2321, 2345, 2404, 2625
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Examples

			19 is a term since phi(19) = 18, phi(20) = 8, 8*18 = 144 = 12^2.
		

Crossrefs

Programs

Formula

a(n) = x is such that sqrt(A000010(x)*A000010(x+1)) is an integer. Values of solutions x to phi(x) * phi(x+1) = A083542(x) = y^2.

A083549 Quotient if least common multiple (lcm) of cototient values of consecutive integers is divided by the greatest common divisor (gcd) of the same pair of consecutive numbers.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 12, 2, 6, 8, 8, 8, 56, 56, 8, 12, 12, 12, 12, 12, 12, 16, 80, 70, 126, 144, 16, 22, 22, 16, 208, 234, 198, 264, 24, 20, 12, 40, 24, 30, 30, 24, 56, 56, 24, 32, 224, 210, 570, 532, 28, 36, 60, 480, 672, 70, 30, 44, 44, 32, 864, 864, 544, 782, 46, 36, 900
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=33: cototient(33) = 33-20 = 13, cototient(34) = 34-16 = 18;
lcm(13,18) = 234, gcd(13,18) = 1, so a(34) = 234.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := x-EulerPhi[x]; Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 69}]
    (* Second program: *)
    Map[Apply[LCM, #]/Apply[GCD, #] &@ Map[# - EulerPhi@ # &, #] &, Partition[Range[69], 2, 1]] (* Michael De Vlieger, Mar 17 2018 *)

Formula

a(n) = lcm(A051953(n), A051952(n+1))/gcd(A051953(n), A051952(n+1)) = lcm(cototient(n+1), cototient(n))/A049586(n).
Showing 1-3 of 3 results.