cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084723 Primes arising in A083566. a(n) = n-th partial product of A083566 + 2.

Original entry on oeis.org

3, 5, 17, 107, 947, 14177, 269327, 6733127, 181794377, 9635101877, 549200806877, 35698052446877, 2534561723728127, 220506869964346877, 22271193866399034377, 3362950273826254190627, 655775303396119567171877
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 13 2003

Keywords

Crossrefs

Extensions

More terms from David Wasserman, Jan 03 2005

A084722 Duplicate of A083566.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 19, 25, 27, 53, 57, 65, 71, 87, 101, 151, 195, 247, 253, 255, 277, 289, 291
Offset: 1

Views

Author

Keywords

A084724 Beginning with 2, the smallest even number greater than the previous term such that every partial product + 1 is a prime.

Original entry on oeis.org

2, 6, 8, 12, 16, 18, 20, 22, 26, 36, 42, 44, 100, 120, 124, 162, 168, 174, 192, 218, 272, 278, 338, 364, 380, 392, 502, 512, 532, 560, 594, 614, 698, 790, 814, 838, 922, 938, 1072, 1082, 1092, 1102, 1146, 1182, 1256, 1354, 1360, 1484, 1508, 1566, 1662, 1690
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • Mathematica
    ppp[{p_,a_}]:=Module[{n=a+2},While[!PrimeQ[p*n+1],n=n+2];{p*n,n}]; NestList[ ppp,{2,2},60][[All,2]] (* Harvey P. Dale, Aug 12 2017 *)

Extensions

More terms from David Wasserman, Jan 03 2005

A085013 a(1) = 1; for n>1, a(n) = smallest prime > a(n-1) such that a(1)*...*a(n) + 2 is a prime.

Original entry on oeis.org

1, 3, 5, 7, 13, 23, 29, 37, 43, 61, 73, 89, 137, 151, 167, 199, 269, 383, 397, 521, 619, 659, 739, 1217, 1307, 1613, 1741, 1847, 1873, 2039, 2473, 2521, 2531, 3011, 3391, 3637, 3793, 4201, 4751, 5039, 5879, 6299, 7307, 7829, 8243, 8933, 9781, 9829, 10069
Offset: 1

Views

Author

Robert G. Wilson v, Jun 17 2003

Keywords

Crossrefs

Cf. A083566.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 2}, While[ !PrimeQ[k] || ! PrimeQ[ k * Times @@ Table[ a[i], {i, 1, n - 1}] + 2], k += 2]; k]; Table[ a[n], {n, 1, 49}]
    nxt[{t_,a_}]:=Module[{p=NextPrime[a]},While[!PrimeQ[t*p+2],p= NextPrime[ p]];{t*p,p}]; NestList[nxt,{1,1},50][[All,2]] (* Harvey P. Dale, Jan 09 2022 *)

A073674 Rearrangement of odd numbers such that every partial product + 2 is a prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 19, 25, 27, 53, 43, 11, 33, 49, 17, 29, 95, 37, 13, 31, 23, 41, 47, 63, 81, 35, 51, 69, 113, 45, 57, 21, 67, 75, 55, 107, 73, 137, 131, 231, 61, 103, 39, 115, 59, 145, 91, 101, 205, 125, 77, 227, 93, 129, 127, 161, 201, 167, 97, 165, 141, 155, 169
Offset: 1

Views

Author

Amarnath Murthy, Aug 11 2002

Keywords

Examples

			For 1, 3, 5, 7: 1+2 = 3, 1*3+2 = 5, 1*3*5+2 = 17, 1*3*5*7+2 = 107 are primes. - _Daniel Forgues_, Dec 20 2012
		

Crossrefs

Cf. A083769.
Cf. A083566.

Programs

  • Mathematica
    f[s_List] := Block[{k = 1, p = Times @@ s}, While[ MemberQ[s, k] || !PrimeQ[k*p + 2], k += 2]; Append[s, k]]; Nest[f, {1}, 62] (* Robert G. Wilson v, Dec 24 2012 *)

Extensions

More terms from Sascha Kurz, Feb 01 2003
Showing 1-5 of 5 results.