cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083579 Generalized Jacobsthal numbers.

Original entry on oeis.org

0, 1, 1, 4, 8, 19, 39, 82, 166, 337, 677, 1360, 2724, 5455, 10915, 21838, 43682, 87373, 174753, 349516, 699040, 1398091, 2796191, 5592394, 11184798, 22369609, 44739229, 89478472, 178956956, 357913927, 715827867, 1431655750, 2863311514
Offset: 0

Views

Author

Paul Barry, May 01 2003

Keywords

Crossrefs

Cf. A083580.

Programs

  • GAP
    a:=[0,1,1,4];; for n in [5..40] do a[n]:=3*a[n-1]-a[n-2]-3*a[n-3] +2*a[n-4]; od; a; # G. C. Greubel, May 24 2019
  • Magma
    I:=[0,1,1,4]; [n le 4 select I[n] else 3*Self(n-1)-Self(n-2) - 3*Self(n-3)+2*Self(n-4): n in [1..40]]; // G. C. Greubel, May 25 2019
    
  • Mathematica
    LinearRecurrence[{3,-1,-3,2}, {0,1,1,4}, 40] (* G. C. Greubel, May 25 2019 *)
  • PARI
    concat(0, Vec(x*(1-2*x+2*x^2)/(1-3*x+x^2+3*x^3-2*x^4) + O(x^40))) \\ G. C. Greubel, May 25 2019
    
  • Sage
    (x*(1-2*x+2*x^2)/(1-3*x+x^2+3*x^3-2*x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
    

Formula

a(n) = (2^(n+3) - 5*(-1)^n - 3*(2*n+1))/12.
a(n+2) = a(n+1) + 2*a(n) + n, a(0)=0, a(1)=1.
G.f.: x*(1 - 2*x + 2*x^2)/(1 - 3*x + x^2 + 3*x^3 - 2*x^4). - Colin Barker, Jan 16 2012