A083579 Generalized Jacobsthal numbers.
0, 1, 1, 4, 8, 19, 39, 82, 166, 337, 677, 1360, 2724, 5455, 10915, 21838, 43682, 87373, 174753, 349516, 699040, 1398091, 2796191, 5592394, 11184798, 22369609, 44739229, 89478472, 178956956, 357913927, 715827867, 1431655750, 2863311514
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,2).
Crossrefs
Cf. A083580.
Programs
-
GAP
a:=[0,1,1,4];; for n in [5..40] do a[n]:=3*a[n-1]-a[n-2]-3*a[n-3] +2*a[n-4]; od; a; # G. C. Greubel, May 24 2019
-
Magma
I:=[0,1,1,4]; [n le 4 select I[n] else 3*Self(n-1)-Self(n-2) - 3*Self(n-3)+2*Self(n-4): n in [1..40]]; // G. C. Greubel, May 25 2019
-
Mathematica
LinearRecurrence[{3,-1,-3,2}, {0,1,1,4}, 40] (* G. C. Greubel, May 25 2019 *)
-
PARI
concat(0, Vec(x*(1-2*x+2*x^2)/(1-3*x+x^2+3*x^3-2*x^4) + O(x^40))) \\ G. C. Greubel, May 25 2019
-
Sage
(x*(1-2*x+2*x^2)/(1-3*x+x^2+3*x^3-2*x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
Formula
a(n) = (2^(n+3) - 5*(-1)^n - 3*(2*n+1))/12.
a(n+2) = a(n+1) + 2*a(n) + n, a(0)=0, a(1)=1.
G.f.: x*(1 - 2*x + 2*x^2)/(1 - 3*x + x^2 + 3*x^3 - 2*x^4). - Colin Barker, Jan 16 2012