cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A083580 Binomial transform of A083579.

Original entry on oeis.org

0, 1, 3, 10, 34, 114, 374, 1202, 3798, 11842, 36550, 111954, 340982, 1034210, 3127206, 9434866, 28419286, 85503618, 257035142, 772219538, 2319017910, 6962034466, 20896589158, 62711787570, 188181500054, 564640969154
Offset: 0

Views

Author

Paul Barry, May 01 2003

Keywords

Examples

			a(0) = 2/3-5/12-1/4 = 0 (use 0^0=1).
		

Crossrefs

Cf. A083579.

Programs

  • Mathematica
    CoefficientList[Series[x*(1 - 4*x + 5*x^2)/((1 - 2*x)^2*(1 - 3*x)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Dec 28 2023 *)

Formula

a(n) = 2*3^n/3-5*0^n/12-(n+1)*2^(n-2).
G.f.: x*(1-4*x+5*x^2)/((1-2*x)^2*(1-3*x)). - Colin Barker, Apr 16 2012

A084172 a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4).

Original entry on oeis.org

1, 2, 4, 9, 19, 40, 82, 167, 337, 678, 1360, 2725, 5455, 10916, 21838, 43683, 87373, 174754, 349516, 699041, 1398091, 2796192, 5592394, 11184799, 22369609, 44739230, 89478472, 178956957, 357913927, 715827868, 1431655750, 2863311515
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Original name was: Generalized Jacobsthal numbers.
Sums of rows of the triangle in A109225. - Reinhard Zumkeller, Jun 23 2005

Programs

  • Magma
    [2^(n+2)/3-(-1)^n/12-(2*n+1)/4: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
  • Mathematica
    LinearRecurrence[{3,-1,-3,2},{1,2,4,9},40] (* Harvey P. Dale, Nov 13 2013 *)

Formula

a(n) = 2^(n+2)/3 - (-1)^n/12 - (2*n+1)/4.
G.f: (2*x^3 - x^2 - x + 1)/( (x+1)*(1-2*x)*(1-x)^2).
a(n+2) = a(n+1) + 2*a(n) + n, a(0)=0, a(1)=2.
a(n) = A001045(n+1) + A083579(n).
a(n+1) = 2*a(n) + floor(n/2). Franklin T. Adams-Watters, Oct 17 2013
a(n)+a(n+1) = A095768(n+1). - R. J. Mathar, Apr 15 2024

A284353 Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 1, 7, 13, 31, 61, 127, 253, 511, 1021, 2047, 4093, 8191, 16381, 32767, 65533, 131071, 262141, 524287, 1048573, 2097151, 4194301, 8388607, 16777213, 33554431, 67108861, 134217727, 268435453, 536870911, 1073741821, 2147483647, 4294967293, 8589934591
Offset: 0

Views

Author

Robert Price, Mar 25 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.
If one begins the Generalized Jacobsthal numbers (A083579) with a(0)=1, instead of a(0)=0, the same sequence will be obtained. - Henrik Lipskoch, Jan 28 2021

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 899; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Mar 26 2017: (Start)
G.f.: (1 - x + 4*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
a(n) = 2^(n+1) - 1 for n even.
a(n) = 2^(n+1) - 3 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2. (End)
Conjecture: For n > 0, a(n) = Sum_{k=0..n-1} C(n,k) * (2-(-1)^k). - Wesley Ivan Hurt, Sep 23 2017
Apparently, a(n) = 6*A000975(n-1) + 1 for n >= 1. - Hugo Pfoertner, Jan 28 2021

A083578 a(n) = (6^n + (-4)^n)/2.

Original entry on oeis.org

1, 1, 26, 76, 776, 3376, 25376, 131776, 872576, 4907776, 30757376, 179301376, 1096779776, 6496792576, 39316299776, 234555621376, 1412702437376, 8454739787776, 50814338072576, 304542431051776, 1828628975845376
Offset: 0

Views

Author

Paul Barry, Apr 30 2003

Keywords

Crossrefs

Cf. A083579. First differences of A051958.

Programs

  • Mathematica
    LinearRecurrence[{2,24},{1,1},30] (* Harvey P. Dale, Nov 29 2017 *)

Formula

a(n) = (6^n + (-4)^n)/2.
G.f.: (1-x)/((1+4x)(1-6x)).
E.g.f.: (exp(6x) + exp(-4x))/2.

A084173 a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4).

Original entry on oeis.org

1, 3, 5, 13, 27, 59, 121, 249, 503, 1015, 2037, 4085, 8179, 16371, 32753, 65521, 131055, 262127, 524269, 1048557, 2097131, 4194283, 8388585, 16777193, 33554407, 67108839, 134217701, 268435429, 536870883, 1073741795, 2147483617
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Original name was: A sum of generalized Jacobsthal numbers.

Programs

  • Magma
    [2^(n+1)-(2*n+1)/2-(-1)^n/2: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Mathematica
    a[n_]:=2^(n+1) - (2*n+1)/2 - (-1)^n/2; Array[a, 50, 0] (* or *)
    CoefficientList[Series[(4*x^3 - 3*x^2 + 1)/(-2*x^4 + 3*x^3 + x^2 - 3*x + 1), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{3, -1, -3, 2}, {1, 3, 5, 13}, 50] (* Stefano Spezia, Oct 08 2018 *)
  • PARI
    x='x+O('x^33); Vec((4*x^3-3*x^2+1)/(-2*x^4+3*x^3+x^2-3*x+1)) \\ Altug Alkan, Oct 08 2018

Formula

a(n) = 2^(n+1) - (2*n+1)/2 - (-1)^n/2.
G.f.: (4*x^3 - 3*x^2 + 1)/(-2*x^4 + 3*x^3 + x^2 - 3*x + 1).
a(n) = A084172(n) + A083579(n).

A338198 Triangle read by rows, T(n,k) = ((k+1)*2^(n-k)-(k-2)*(-1)^(n-k))/3 for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 2, 3, 2, 1, 6, 5, 4, 3, 1, 10, 11, 8, 5, 4, 1, 22, 21, 16, 11, 6, 5, 1, 42, 43, 32, 21, 14, 7, 6, 1, 86, 85, 64, 43, 26, 17, 8, 7, 1, 170, 171, 128, 85, 54, 31, 20, 9, 8, 1, 342, 341, 256, 171, 106, 65, 36, 23, 10, 9, 1, 682, 683, 512, 341, 214, 127, 76, 41, 26, 11, 10, 1
Offset: 0

Views

Author

Werner Schulte, Oct 15 2020

Keywords

Comments

This triangle is related to the Jacobsthal numbers (A001045).

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
n\k :    0     1     2    3    4    5    6   7   8   9
======================================================
  0 :    1
  1 :    0     1
  2 :    2     1     1
  3 :    2     3     2    1
  4 :    6     5     4    3    1
  5 :   10    11     8    5    4    1
  6 :   22    21    16   11    6    5    1
  7 :   42    43    32   21   14    7    6   1
  8 :   86    85    64   43   26   17    8   7   1
  9 :  170   171   128   85   54   31   20   9   8   1
etc.
		

Crossrefs

For columns k = 0 to 8 see A078008, A001045, A000079, A001045, A084214, A014551, A083595, A083582, A259713 respectively.

Programs

  • Mathematica
    Table[((k + 1)*2^(n - k) - (k - 2)*(-1)^(n - k))/3, {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 15 2020 *)

Formula

T(n,n) = 1 for n >= 0; T(n,n-1) = n-1 for n > 0.
T(n,k) = T(n-1,k) + 2 * T(n-2,k) for 0 <= k <= n-2.
T(n,k) = 2 * T(n-1,k) - (k-2) * (-1)^(n-k) for 0 <= k < n.
T(n,k) = T(n+1-k,1) + (k-1) * T(n-k,1) for 0 <= k < n.
T(n+1,k) * T(n-1,k) - T(n,k+1) * T(n,k-1) = T(n-k,1)^2 for 0 < k < n.
Row sums are A083579(n+1) for n >= 0.
G.f. of column k >= 0: (1+(k-1)*t) * t^k / (1-t-2*t^2).
G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = (1 - (1+x)*t + 2*x*t^2) / ((1 - x*t)^2 * (1 - t - 2*t^2)).
Conjecture: Let M(n,k) be the matrix inverse of T(n,k), seen as a matrix. Then M(i,j) = 0 if j < 0 or j > i, M(n,n) = 1 for n >= 0, M(n,n-1) = 1-n for n > 0, and M(n,k) = (-1)^(n-k) * (k^2-2) * (n-2)! / k! for 0 <= k <= n-2.
Showing 1-6 of 6 results.