cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A083687 Numerator of B(2n)*H(2n)/n*(-1)^(n+1) where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.

Original entry on oeis.org

1, 5, 7, 761, 671, 4572347, 1171733, 518413759, 32956355893, 1949885751497, 21495895979, 63715389517501781, 22630025105469577, 36899945775958445129, 517210776697519633301437, 4518133367201930332907311663
Offset: 1

Views

Author

Benoit Cloitre, Jun 15 2003

Keywords

Crossrefs

Cf. A083688.

Programs

  • Mathematica
    Table[ BernoulliB[2n] * HarmonicNumber[2n] / n // Numerator // Abs, {n, 1, 16}] (* Jean-François Alcover, Mar 24 2015 *)
  • PARI
    a(n)=numerator((-1)^(n+1)*bernfrac(2*n)*sum(k=1,2*n,1/k)/n)
    
  • Python
    from sympy import bernoulli, harmonic, numer
    def a(n):
        return numer(bernoulli(2 * n) * harmonic(2 * n) * (-1)**(n + 1) / n)
    [a(n) for n in range(1, 31)]  # Indranil Ghosh, Aug 04 2017

Formula

Miki's identity : B(n)*H(n)*(2/n) = sum(i=2, n-2, B(i)/i*B(n-i)/(n-i)*(1-C(n, i)))
Showing 1-1 of 1 results.