cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083688 Denominator of B(2n)*H(2n)/n where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.

Original entry on oeis.org

4, 144, 360, 33600, 15120, 34927200, 2162160, 172972800, 1543782240, 10242872640, 10346336, 2338727174784, 53542288800, 4818805992000, 3228118134040800, 1178332991611776000, 78765574305600, 12256711017694416000, 2914326249307200, 3205758874237920000, 358462128664785600
Offset: 1

Views

Author

Benoit Cloitre, Jun 15 2003

Keywords

Comments

B(2n) is negative for even n, but this does not affect the denominator. - M. F. Hasler, Dec 24 2013

Crossrefs

Cf. A083687.

Programs

  • Mathematica
    Denominator[Table[(BernoulliB[2n]HarmonicNumber[2n])/(n (-1)^(n+1)),{n,20}]] (* Harvey P. Dale, Jun 25 2013 *)
  • PARI
    a(n)=denominator(bernfrac(2*n)*sum(k=1,2*n,1/k)/n)
    
  • Python
    from sympy import bernoulli, harmonic
    def a(n): return (bernoulli(2*n) * harmonic(2*n) / n).denominator
    print([a(n) for n in range(1, 22)]) # Indranil Ghosh, Aug 04 2017

Formula

Miki's identity : B(n)*H(n)*(2/n) = sum(i=2, n-2, B(i)/i*B(n-i)/(n-i)*(1-C(n, i)))

A110841 a(n) is the number of prime factors, with multiplicity, of abs(A014509(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 7, 7, 2, 2, 4, 3, 3, 7, 1, 6, 4, 5, 14, 4, 9, 5, 10, 3, 11, 2, 5, 3, 7, 11, 5, 3, 4, 15, 6, 5, 19, 10, 6, 13, 15, 5, 10, 5, 5, 6, 7, 5, 15, 7, 5, 2, 13, 4, 3, 10, 5, 9, 7, 5, 4, 9, 5, 4, 1, 7, 4, 4, 5, 3, 11, 13, 10, 5, 5, 7, 6
Offset: 0

Views

Author

Jonathan Vos Post, Sep 16 2005

Keywords

Examples

			a(10) = 2 because A014509(10) = 529 = 23^2.
a(8) = a(19) = 1 since A014509(8) and A014509(19) are prime.
		

Crossrefs

Programs

  • PARI
    a(n) = my(b=bernfrac(2*n), c=floor(abs(b))*sign(b)); if (c==0, 0, bigomega(c)); \\ Michel Marcus, Mar 29 2020

Formula

a(n) = A001222(abs(A014509(n))).

Extensions

More terms from Michel Marcus, Mar 29 2020
a(51)-a(65) from Jinyuan Wang, Apr 02 2020
More terms from Sean A. Irvine, Jul 29 2024
Showing 1-2 of 2 results.