cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083695 a(n) = 2*a(n-1) + 5*a(n-2), with a(0) = 0, a(1) = 3.

Original entry on oeis.org

0, 3, 6, 27, 84, 303, 1026, 3567, 12264, 42363, 146046, 503907, 1738044, 5995623, 20681466, 71341047, 246089424, 848884083, 2928215286, 10100850987, 34842778404, 120189811743, 414593515506, 1430136089727, 4933239756984, 17017159962603, 58700518710126
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), May 03 2003

Keywords

Comments

A002533(n)/a(n) converges to sqrt(2/3).

Programs

  • Magma
    I:=[0,3]; [n le 2 select I[n] else 2*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 07 2013
  • Mathematica
    CoefficientList[Series[3x/(1-2x-5x^2), {x, 0, 25}], x]
    LinearRecurrence[{2, 5}, {0, 3}, 27] (* Arkadiusz Wesolowski, May 21 2013 *)

Formula

G.f.: 3x/(1-2x-5x^2).
a(n) = 3[(1+sqrt(6))^n-(1-sqrt(6))^n]/(2*sqrt(6)).
a(n) = 3*A002533(n-1) + a(n-1).
G.f.: 1/Q(0) -1, where Q(k) = 1 + 5*x^2 - (3*k+4)*x + x*(3*k+1 - 5*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013