cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083732 Pseudoprimes to bases 2 and 5.

Original entry on oeis.org

561, 1729, 2821, 5461, 6601, 8911, 12801, 13981, 15841, 29341, 41041, 46657, 52633, 63973, 68101, 75361, 101101, 113201, 115921, 126217, 137149, 162401, 172081, 188461, 252601, 294409, 314821, 334153, 340561, 399001, 401401, 410041, 488881
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Examples

			a(1)=561 since 561 is the first positive integer k(>1) which satisfies 2^(k-1) = 1 (mod k) and 5^(k-1) = 1 (mod k).
		

Crossrefs

Intersection of A001567 and A005936. - R. J. Mathar, Apr 05 2011

Programs

  • Mathematica
    Select[Range[1, 10^5, 2], CompositeQ[#] &&  PowerMod[2, #-1,#] == PowerMod[5, #-1,#] == 1 &] (* Amiram Eldar, Jun 29 2019 *)
  • PARI
    lista(nn) = forcomposite(n=1, nn, if ((Mod(2, n)^(n-1)==1) && (Mod(5, n)^(n-1)==1), print1(n, ", "));); \\ Michel Marcus, Sep 08 2016

Formula

a(n) = n-th positive integer k(>1) such that 2^(k-1) = 1 (mod k) and 5^(k-1) = 1 (mod k).