A083732 Pseudoprimes to bases 2 and 5.
561, 1729, 2821, 5461, 6601, 8911, 12801, 13981, 15841, 29341, 41041, 46657, 52633, 63973, 68101, 75361, 101101, 113201, 115921, 126217, 137149, 162401, 172081, 188461, 252601, 294409, 314821, 334153, 340561, 399001, 401401, 410041, 488881
Offset: 1
Examples
a(1)=561 since 561 is the first positive integer k(>1) which satisfies 2^(k-1) = 1 (mod k) and 5^(k-1) = 1 (mod k).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..16699 (terms 1..169 from R. J. Mathar)
- F. Richman, Primality testing with Fermat's little theorem
Crossrefs
Programs
-
Mathematica
Select[Range[1, 10^5, 2], CompositeQ[#] && PowerMod[2, #-1,#] == PowerMod[5, #-1,#] == 1 &] (* Amiram Eldar, Jun 29 2019 *)
-
PARI
lista(nn) = forcomposite(n=1, nn, if ((Mod(2, n)^(n-1)==1) && (Mod(5, n)^(n-1)==1), print1(n, ", "));); \\ Michel Marcus, Sep 08 2016
Formula
a(n) = n-th positive integer k(>1) such that 2^(k-1) = 1 (mod k) and 5^(k-1) = 1 (mod k).