cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083770 Primes arising in A083769.

Original entry on oeis.org

3, 13, 97, 1153, 18433, 184321, 737281, 22118401, 575078401, 12651724801, 303641395201, 4250979532801, 212548976640001, 8927057018880001, 160687026339840001, 10283969685749760001, 473062605544488960001
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 06 2003

Keywords

Crossrefs

Cf. A083769.

Extensions

More terms from David Wasserman, Nov 23 2004

A073673 Rearrangement of natural numbers such that every partial product + 1 is a prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 4, 7, 10, 17, 12, 11, 13, 8, 19, 27, 21, 26, 20, 16, 14, 28, 22, 18, 47, 30, 31, 23, 34, 37, 41, 45, 49, 33, 36, 58, 24, 62, 39, 56, 42, 93, 54, 25, 51, 53, 15, 70, 72, 73, 46, 50, 64, 97, 55, 57, 171, 96, 79, 81, 66, 71, 132, 89, 121, 29, 61, 60, 177, 32
Offset: 1

Views

Author

Amarnath Murthy, Aug 11 2002

Keywords

Comments

From Robert G. Wilson v, Dec 24 2012: (Start)
Records: 1, 2, 3, 5, 6, 9, 10, 17, 19, 27, 28, 47, 49, 58, 62, 93, 97, 171, 177, 184, 221, 243, 470, 512, 573, 768, 856, 999, 1028, 1226, 1659, 2522, ...
Late Records: 1, 2, 3, 4, 7, 8, 14, 15, 29, 32, 35, 59, 75, ... (End)

Crossrefs

Programs

  • Mathematica
    f[s_List] := Block[{k = 1, p = Times @@ s}, While[ MemberQ[s, k] || !PrimeQ[k*p + 1], k++]; Append[s, k]]; Nest[f, {1}, 69] (* Robert G. Wilson v, Dec 24 2012 *)
  • PARI
    v=[1];n=1;while(n<100,s=1+n*prod(i=1,#v,v[i]);if(isprime(s)&&!vecsearch(vecsort(v),n),v=concat(v,n);n=0);n++);v \\ Derek Orr, Jun 16 2015
    
  • Python
    from gmpy2 import is_prime
    from itertools import islice
    def agen(startp=1, startset=set()): # generator of terms
        aset, p, mink = startset, startp, 1
        while True:
            an = mink
            while an in aset or not is_prime(p*an + 1): an += 1
            yield an; aset.add(an); p *= an
            while mink in aset: aset.discard(mink); mink += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, May 19 2023

Formula

Conjecture: n/log(n) << a(n) << n*log(n). - Thomas Ordowski, Aug 09 2017

Extensions

More terms from Sascha Kurz, Feb 01 2003

A073674 Rearrangement of odd numbers such that every partial product + 2 is a prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 19, 25, 27, 53, 43, 11, 33, 49, 17, 29, 95, 37, 13, 31, 23, 41, 47, 63, 81, 35, 51, 69, 113, 45, 57, 21, 67, 75, 55, 107, 73, 137, 131, 231, 61, 103, 39, 115, 59, 145, 91, 101, 205, 125, 77, 227, 93, 129, 127, 161, 201, 167, 97, 165, 141, 155, 169
Offset: 1

Views

Author

Amarnath Murthy, Aug 11 2002

Keywords

Examples

			For 1, 3, 5, 7: 1+2 = 3, 1*3+2 = 5, 1*3*5+2 = 17, 1*3*5*7+2 = 107 are primes. - _Daniel Forgues_, Dec 20 2012
		

Crossrefs

Cf. A083769.
Cf. A083566.

Programs

  • Mathematica
    f[s_List] := Block[{k = 1, p = Times @@ s}, While[ MemberQ[s, k] || !PrimeQ[k*p + 2], k += 2]; Append[s, k]]; Nest[f, {1}, 62] (* Robert G. Wilson v, Dec 24 2012 *)

Extensions

More terms from Sascha Kurz, Feb 01 2003

A233746 a(1) = 3; for n>3, a(n) = smallest number > a(n-1) such that a(1)*a(2)*...*a(n) + 1 is nonprime.

Original entry on oeis.org

3, 5, 6, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Michel Lagneau, Dec 15 2013

Keywords

Comments

The numbers 1, 2, 4, 7, 9, 11, 32, 322, 498, 685, 880, ... are not in the sequence.

Examples

			3+1 = 4, 3*5+1 = 16, 3*5*6+1 = 91, 3*5*6*8+1 = 721, etc. are nonprimes.
		

Crossrefs

Programs

  • Maple
    A[1]:= 3: P:= 3:
    for n from 2 to 100 do
      for k from A[n-1]+1 do
        if not isprime(P*k+1) then
          A[n]:= k; P:= P*k; break
        fi
    od od:
    seq(A[i],i=1..100); # Robert Israel, Jun 18 2019
  • Mathematica
    seq={3};Do[n=Last[seq]+1;While[PrimeQ[n Times@@seq+1],n++];AppendTo[seq,n];,{100}];seq
Showing 1-4 of 4 results.