A083795 Numbers k such that k and k-1 have the same number of divisors. Numbers not included in A083794.
3, 15, 22, 27, 34, 35, 39, 45, 58, 76, 86, 87, 94, 95, 99, 105, 117, 119, 123, 134, 136, 142, 143, 146, 148, 159, 172, 178, 190, 202, 203, 206, 214, 215, 218, 219, 231, 232, 243, 244, 245, 254, 286, 297, 299, 302, 303, 327, 333, 335, 345, 375, 376, 382, 388
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- P. Erdős, On a problem of Chowla and some related problems, Proc. Cambridge Philos. Soc. 32 (1936), pp. 530-540.
- P. Erdős, C. Pomerance, and A. Sárközy, On locally repeated values of certain arithmetic functions, II, Acta Math. Hungarica 49 (1987), pp. 251-259. [alternate link]
- D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika 31 (1984), pp. 141-149.
- Adolf Hildebrand, The divisor function at consecutive integers, Pacific J. Math. 129:2 (1987), pp. 307-319.
Crossrefs
Cf. A083794.
Programs
-
Maple
with(numtheory): for n from 3 to 10^3 do if tau(n) = tau(n-1) then printf(`%d,`,n) fi: od:
-
Mathematica
SequencePosition[DivisorSigma[0,Range[400]],{x_,x_}][[All,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 09 2019 *)
-
PARI
is(n)=n>2 && numdiv(n)==numdiv(n-1) \\ Charles R Greathouse IV, Jul 21 2015
Extensions
Corrected and extended by James Sellers, May 19 2003
Comments