cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A169830 Numbers k such that 2*reverse(k) - k = 1.

Original entry on oeis.org

1, 73, 793, 7993, 79993, 799993, 7999993, 79999993, 799999993, 7999999993, 79999999993, 799999999993, 7999999999993, 79999999999993, 799999999999993, 7999999999999993, 79999999999999993, 799999999999999993, 7999999999999999993, 79999999999999999993, 799999999999999999993
Offset: 1

Views

Author

N. J. A. Sloane, May 31 2010

Keywords

Comments

The sequence is infinite since it contains all numbers of the form 799...9993. (Cf. A101155, A101849.) [Ulrich Krug (leuchtfeuer37(AT)gmx.de), Jun 02 2010]
All numbers of the form 8*10^k-7 are members, but are there any others? - Robert G. Wilson v, Jun 01 2010
All solutions are of the form 8*10^k-7. - David Radcliffe, Jul 25 2015

Crossrefs

Same sequence as A100412.
Digit reversals of A083818.

Programs

  • Mathematica
    k = 1; lst = {}; fQ[n_] := 2 FromDigits@ Reverse@ IntegerDigits@n == 1 + n; While[k < 10^8, If[fQ@k, Print@k; AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Jun 01 2010 *)
    Rest@ CoefficientList[Series[x (1 + 62 x)/((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* or *)
    Table[If[n == 1, 1, FromDigits@ Join[{7}, ConstantArray[9, n - 2], {3}]], {n, 20}] (* or *)
    LinearRecurrence[{11, -10}, {1, 73}, 20] (* Michael De Vlieger, Feb 12 2017 *)
  • PARI
    isok(n) = 2*fromdigits(Vecrev(digits(n))) - n == 1; \\ Michel Marcus, Feb 12 2017

Formula

a(n) = 8*10^(n-1) - 7. - David Radcliffe, Jul 25 2015
From Matthew House, Feb 12 2017: (Start)
G.f.: x*(1+62*x)/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2). (End)
E.g.f.: (31 - 35*exp(x) + 4*exp(10*x))/5. - Elmo R. Oliveira, Jun 12 2025

Extensions

a(6)-a(8) from Robert G. Wilson v, Jun 01 2010
More terms from David Radcliffe, Jul 25 2015

A083819 a(1) = 1, then the smallest k > 1 such that nk + 1 is the digit reversal of k + 1, or 0 if no such number exists.

Original entry on oeis.org

1, 36, 27, 15, 18, 11385, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 08 2003

Keywords

Examples

			a(2) = 36: 2*36 + 1 = 73, 37 = 36 + 1.
a(5) = 18: 18*5 + 1 = 91, 19 = 18 + 1.
		

Crossrefs

Extensions

Corrected and extended by Ray Chandler, Jun 23 2003
Showing 1-2 of 2 results.