A083834 Palindromes of the form 5p + 1 where p is also a palindrome. Palindromes arising in A083833.
6, 11, 111, 606, 656, 1111, 11111, 60106, 60606, 65156, 65656, 111111, 1111111, 6010106, 6015106, 6060606, 6065606, 6510156, 6515156, 6560656, 6565656, 11111111, 111111111, 601010106, 601060106, 601515106, 601565106, 606010606
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..8217 (all terms where p has <= 26 digits)
Programs
-
Mathematica
Select[5Select[Range@100000,PalindromeQ]+1,PalindromeQ] (* Giorgos Kalogeropoulos, Jun 11 2021 *)
-
PARI
is(n) = my(x=(n-1)/5, dn=digits(n), dx); if(x!=ceil(x), return(0)); dx=digits(x); dn==Vecrev(dn) && dx==Vecrev(dx) && n>1 \\ Felix Fröhlich, Jun 11 2021
-
Python
from itertools import product def ispal(n): s = str(n); return s == s[::-1] def pals(d, base=10): # all positive d-digit palindromes digits = "".join(str(i) for i in range(base)) for p in product(digits, repeat=d//2): if d > 1 and p[0] == "0": continue left = "".join(p); right = left[::-1] for mid in [[""], digits][d%2]: t = int(left + mid + right) if t > 0: yield t def ok(pal): return ispal(5*pal+1) print([5*p+1 for d in range(1, 10) for p in pals(d) if ok(p)]) # Michael S. Branicky, Jun 11 2021
Extensions
Corrected and extended by Ray Chandler, May 21 2003
Comments