A083845 a(n)^2 + 1 is largest prime of the form x^2 + 1 <= 10^n.
2, 6, 26, 94, 314, 986, 3160, 9990, 31614, 99996, 316206, 999960, 3162246, 9999960, 31622764, 99999966, 316227734, 999999924, 3162277654, 9999999956, 31622776500, 99999999964, 316227766006, 999999999886, 3162277660140
Offset: 1
Keywords
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
- P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 190.
Links
- Eric Weisstein's World of Mathematics, Landau's Problems.
Programs
-
Mathematica
Do[ k = Floor[ Sqrt[ 10^n] - 1]; While[ !PrimeQ[k^2 + 1], k-- ]; Print[k], {n, 1, 25}]
Extensions
Edited and extended by Robert G. Wilson v, May 08 2003
Comments