A083865 Sums of (one or more distinct) k-perfect numbers.
6, 28, 34, 120, 126, 148, 154, 496, 502, 524, 530, 616, 622, 644, 650, 672, 678, 700, 706, 792, 798, 820, 826, 1168, 1174, 1196, 1202, 1288, 1294, 1316, 1322, 8128, 8134, 8156, 8162, 8248, 8254, 8276, 8282, 8624, 8630, 8652, 8658, 8744, 8750, 8772, 8778
Offset: 1
Examples
a(3) = 34 because it is the sum of 6 + 28 both of which are perfect numbers.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10000: # to get all terms <= N Kperf:= select(t -> numtheory:-sigma(t) mod t = 0, [$2..N]): S:= {0}: for k in Kperf do S:= S union (k +~ S) od: sort(convert(S minus {0}, list)); # Robert Israel, Nov 29 2016
-
Mathematica
With[{perf=Select[Range[10000],DivisorSigma[1,#]==2#&]},Rest[Union[Total/@ Subsets[perf]]]] (* Harvey P. Dale, Feb 07 2012 *)
-
PARI
a=[];n=1;until(50<#a=concat(a,vector(#a+1,i,n+if(i>1,a[i-1]))),while(sigma(n++)%n,));a \\ M. F. Hasler, Feb 09 2012
Formula
Empirical observation: a(n) = 2*n + Sum_{k >= 1} 4^k*floor(2*n/2^k) for 1 <= n <= 15 and 32 <= n <= 47; a(n) = 2*n - 1344 + Sum_{k >= 1} 4^k*floor(2*n/2^k) for 16 <= n <= 31. Note 1344 = 4^3 + 4^4 + 4^5. Cf. A000695. - Peter Bala, Nov 29 2016
If b(n) = 2*n + Sum_{k >= 1} 4^k*floor(2*n/2^k) - a(n), we also have b(n) = 1344 for 48 <= n <= 63, then 2400 for 64 <= n <= 79, 3744 for 80 <= n <= 95, 8008 for 96 <= n <= 111, etc. The first case where b(n) is not constant on an interval 16*k <= n <= 16*k+15 is k=57214, where b(915431)=2747770287196 but b(915432)=2747770287312. - Robert Israel, Nov 29 2016
Extensions
Corrected by M. F. Hasler and others, Feb 07 2012
Comments