cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083889 Number of divisors of n with largest digit = 2 (base 10).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Examples

			n=120, 4 of the 16 divisors of 120 have largest digit =2: {2,12,20,120}, therefore a(120)=4.
		

Crossrefs

Programs

  • Magma
    [#[d:d in Divisors(n) | Max(Intseq(d)) eq 2]: n in [1..120]]; // Marius A. Burtea, Oct 06 2019
  • Maple
    f:= proc(n) nops(select(t -> max(convert(t, base, 10))=d, numtheory:-divisors(n))) end proc:
    d:= 2:
    map(f, [$1..200]); # Robert Israel, Oct 06 2019
  • Mathematica
    With[{k = 2}, Array[DivisorSum[#, 1 &, And[#[[k]] > 0, Total@ #[[k + 1 ;; 9]] == 0] &@ DigitCount[#] &] &, 105]] (* Michael De Vlieger, Oct 06 2019 *)

Formula

a(n) = A000005(n) - A083888(n) - A083890(n) - A083891(n) - A083892(n) - A083893(n) - A083894(n) - A083895(n) - A083896(n) = A083897(n) - A083888(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A277964(k) = 0.85636382912390578285... . - Amiram Eldar, Jan 04 2024