A083945 Least integer coefficients of A(x), where 1<=a(n)<=5, such that A(x)^(1/5) consists entirely of integer coefficients.
1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 4, 5, 5, 5, 5, 3, 5, 5, 5, 5, 2, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 2, 5, 5, 5, 5, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 5, 5, 5, 5, 3, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..3000.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = Block[{k = 1, s = Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/5), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v *)
Extensions
More terms from Robert G. Wilson v, Jul 26 2005
Comments