cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A084205 G.f. A(x) defined by: A(x)^5 consists entirely of integer coefficients between 1 and 5 (A083945); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -1, 3, -8, 24, -76, 252, -854, 2950, -10343, 36706, -131570, 475576, -1731357, 6342042, -23356185, 86421603, -321111661, 1197586539, -4481348585, 16819759474, -63302097780, 238835017492, -903165412289, 3422512973645, -12994514592311, 49425252955926
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) -> r = -0.2512525316047635 where A(r)=0.

Crossrefs

Programs

  • Mathematica
    kmax = 30;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^5 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1};
    coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 5, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax+1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)

A110631 Every 5th term of A083945 such that the self-convolution 5th power is congruent modulo 25 to A083945, which consists entirely of numbers 1 through 5.

Original entry on oeis.org

1, 1, 4, 3, 2, 4, 4, 2, 1, 5, 2, 1, 5, 1, 3, 2, 5, 3, 4, 4, 5, 4, 5, 2, 1, 5, 4, 1, 2, 5, 1, 5, 1, 1, 1, 2, 3, 4, 2, 2, 4, 3, 2, 5, 2, 3, 5, 1, 1, 2, 3, 3, 1, 1, 2, 2, 3, 4, 4, 1, 2, 1, 3, 4, 1, 4, 2, 3, 5, 4, 4, 3, 5, 3, 4, 2, 2, 4, 2, 2, 5, 3, 2, 4, 2, 5, 5, 5, 3, 5, 4, 4, 1, 3, 5, 1, 5, 5, 4, 3, 5, 2, 2, 2, 5
Offset: 0

Views

Author

Keywords

Comments

Congruent modulo 5 to A084205, where the self-convolution 5th power of A084205 equals A083945.

Crossrefs

Programs

  • PARI
    {a(n)=local(p=5,A,C,X=x+x*O(x^(p*n)));if(n==0,1, A=sum(i=0,n-1,a(i)*x^(p*i))+p*x*((1-x^(p-1))/(1-X))/(1-X^p); for(k=1,p,C=polcoeff((A+k*x^(p*n))^(1/p),p*n); if(denominator(C)==1,return(k);break)))}

Formula

a(n) = A083945(5*n) for n>=0.
G.f. satisfies: A(x^5) = G(x) - 5*x*((1-x^4)/(1-x))/(1-x^5), where G(x) is the g.f. of A083945.
G.f. satisfies: A(x)^5 = A(x^5) + 5*x*((1-x^4)/(1-x))/(1-x^5) + 25*x^2*H(x) where H(x) is the g.f. of A111583.

A083952 Integer coefficients a(n) of A(x), where a(n) = 1 or 2 for all n, such that A(x)^(1/2) has only integer coefficients.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Paul D. Hanna, May 09 2003

Keywords

Comments

More generally, the sequence "integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m. [That is true - see Theorem 17 of Heninger-Rains-Sloane (2006). - N. J. A. Sloane, Aug 27 2015]
Is this sequence periodic? [It is not periodic for m = 2 or 3. Larger cases remain open. - N. J. A. Sloane, Aug 27 2015]

Crossrefs

Cf. A084202 (A(x)^(1/2)), A108335 (A084202 mod 4), A108336 (A084202 mod 2), A108340 (a(n) mod 2). Positions of 1's: A108783.

Programs

  • Mathematica
    a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n - 1}]}, If[ IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v, Nov 25 2006 *)
    s = 0; a[n_] := a[n] = Block[{}, If[IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], s = s + x^n; 1, s = s + 2 x^n; 2]]; Table[ a@n, {n, 0, 104}] (* Robert G. Wilson v, Sep 08 2007 *)
  • PARI
    A083952_upto(N=99)=vector(N+1, n, if(n>1, (denominator(polcoeff(sqrt(O(x^n)+N+=x^(n-1)),n-1))>1 && N+=x^(n-1))+1, N=1)) \\ M. F. Hasler, Jan 27 2025

Extensions

More terms from N. J. A. Sloane, Jul 02 2005

A109626 Consider the array T(n,m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the antidiagonal read from lower left to upper right.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 3, 2, 1, 1, 5, 2, 1, 2, 1, 1, 6, 5, 4, 3, 2, 1, 1, 7, 3, 5, 3, 3, 1, 1, 1, 8, 7, 2, 5, 4, 3, 2, 1, 1, 9, 4, 7, 3, 1, 4, 3, 2, 1, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 11, 5, 3, 2, 7, 6, 5, 1, 3, 1, 1, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 13, 6, 11, 10, 9, 4, 1, 3, 5
Offset: 1

Views

Author

Keywords

Examples

			Table begins:
\k...0...1...2...3...4...5...6...7...8...9..10..11..12..13
n\
 1|  1   1   1   1   1   1   1   1   1   1   1   1   1   1
 2|  1   2   1   2   2   2   1   2   2   2   1   2   1   2
 3|  1   3   3   1   3   3   3   3   3   3   3   3   1   3
 4|  1   4   2   4   3   4   4   4   1   4   4   4   3   4
 5|  1   5   5   5   5   1   5   5   5   5   4   5   5   5
 6|  1   6   3   2   3   6   6   6   3   4   6   6   6   6
 7|  1   7   7   7   7   7   7   1   7   7   7   7   7   7
 8|  1   8   4   8   2   8   4   8   7   8   8   8   4   8
 9|  1   9   9   3   9   9   3   9   9   1   9   9   6   9
10|  1  10   5  10  10   2   5  10  10  10   3  10   5  10
11|  1  11  11  11  11  11  11  11  11  11  11   1  11  11
12|  1  12   6   4   9  12   4  12  12   8   6  12   6  12
13|  1  13  13  13  13  13  13  13  13  13  13  13  13   1
14|  1  14   7  14   7  14  14   2   7  14  14  14  14  14
15|  1  15  15   5  15   3  10  15  15  10  15  15   5  15
16|  1  16   8  16   4  16   8  16  10  16   8  16  12  16
		

Crossrefs

Diagonals: A000027 (main), A111614 (first upper), A111627 (2nd), A111615 (3rd), A111618 (first lower), A111623 (2nd).
Other diagonals: A005408 (T(2*n-1, n)), A111626, A111627, A111628, A111629, A111630.

Programs

  • Mathematica
    f[n_]:= f[n]= Block[{a}, a[0] = 1; a[l_]:= a[l]= Block[{k = 1, s = Sum[ a[i]*x^i, {i,0,l-1}]}, While[ IntegerQ[Last[CoefficientList[Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j,0,32}]];
    T[n_, m_]:= f[n][[m]];
    Flatten[Table[T[i,n-i], {n,15}, {i,n-1,1,-1}]]
  • PARI
    A109626_row(n, len=40)={my(A=1, m); vector(len, k, if(k>m=1, while(denominator(polcoeff(sqrtn(O(x^k)+A+=x^(k-1), n), k-1))>1, m++); m, 1))} \\ M. F. Hasler, Jan 27 2025

Formula

When m is prime, column m is T(n,m) = n/gcd(m, n) = numerator of n/(n+m). - M. F. Hasler, Jan 27 2025

A083953 Least integer coefficients of A(x), where 1<=a(n)<=3, such that A(x)^(1/3) consists entirely of integer coefficients.

Original entry on oeis.org

1, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 2, 3, 3, 2, 3, 3, 1, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 1, 3, 3, 2, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 2, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3
Offset: 0

Views

Author

Paul D. Hanna, May 09 2003

Keywords

Comments

More generally, "least integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m. Is this sequence periodic?

Crossrefs

Programs

  • Mathematica
    a[0]=1; a[n_] :=a[n] = Block[{k=1, s=Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/3), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v, Jul 25 2005 *)

Formula

a(k)=1 at k=0, 3, 12, 21, 51, 57, 60, 63, 66, ...; a(k)=2 at k=15, 18, 24, 30, 39, 42, 48, 54, ...

Extensions

More terms from Robert G. Wilson v, Jul 25 2005

A083954 Least integer coefficients of A(x), where 1<=a(n)<=4, such that A(x)^(1/4) consists entirely of integer coefficients.

Original entry on oeis.org

1, 4, 2, 4, 3, 4, 4, 4, 1, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, 3, 4, 2, 4, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 4, 2, 4, 1, 4, 4, 4, 1, 4, 2, 4, 4, 4, 4, 4, 1, 4, 2, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 4, 1, 4, 4, 4, 1, 4, 2, 4, 3
Offset: 0

Views

Author

Paul D. Hanna, May 09 2003

Keywords

Comments

More generally, "least integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m>0. Is this sequence periodic?
From M. F. Hasler, Jan 27 2025: (Start)
The sequence does not seem to become periodic.
Positions of '1's are: (0, 8, 60, 64, 72, 96, 100, 112, 116, 148, 160, 176, 184, 200, 240, 248, 268, 288, 304, 328, 336, 360, 376, 380, 384, 400, 408, 420, 424, 448, 460, 472, ...). All seem to be multiples of 4, mostly multiples of 8.
Positions of '3's are: (4, 12, 16, 28, 36, 40, 76, 84, 104, 124, 136, 172, 192, 196, 208, 212, 220, 232, 252, 260, 284, 296, 312, 364, 368, 392, 404, 428, 432, 436, 452, 456, 468, 488, 492, ...). All seem to be (mostly odd) multiples of 4.
The proportions of '1's, '2's, '3's and '4's among the terms are approximately: 6.5%, 18%, 6.5%, 69%. (Roughly the same values for the first 500 or 5000 terms.) (End)

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] :=a[n] = Block[{k=1, s = Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/4), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v, Jul 26 2005 *)
  • PARI
    A083954_upto(N=99)=vector(N+1, n, if(n>1, for(k=1,4, denominator(polcoeff(sqrtn(O(x^n)+N+=x^(n-1), 4), n-1))>1|| [n=k, break]); n, N=1)) \\ _M. F. Hasler, Jan 27 2025

Extensions

More terms from Robert G. Wilson v, Jul 26 2005

A083946 Least integer coefficients of A(x), where 1<=a(n)<=6, such that A(x)^(1/6) consists entirely of integer coefficients.

Original entry on oeis.org

1, 6, 3, 2, 3, 6, 6, 6, 3, 4, 6, 6, 6, 6, 3, 4, 6, 6, 3, 6, 6, 2, 3, 6, 6, 6, 3, 4, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 3, 4, 6, 6, 4, 6, 6, 2, 6, 6, 4, 6, 3, 2, 3, 6, 6, 6, 3, 4, 3, 6, 3, 6, 3, 4, 6, 6, 2, 6, 3, 6, 3, 6, 1, 6, 6, 4, 6, 6, 2, 6, 6, 2, 6, 6, 3, 6, 3, 4, 6, 6, 1, 6, 6, 6, 6, 6, 6, 6, 3, 2, 6, 6, 6, 6, 3
Offset: 0

Views

Author

Paul D. Hanna, May 09 2003

Keywords

Comments

More generally, "least integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m>0. Is this sequence periodic?

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Block[{k = 1, s = Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/6), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Jul 26 2005

A111603 Consider the array T(n, m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the antidiagonal read from upper right to lower left.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 3, 4, 1, 1, 2, 1, 2, 5, 1, 1, 2, 3, 4, 5, 6, 1, 1, 1, 3, 3, 5, 3, 7, 1, 1, 2, 3, 4, 5, 2, 7, 8, 1, 1, 2, 3, 4, 1, 3, 7, 4, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 1, 3, 1, 5, 6, 7, 2, 3, 5, 11, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 1, 1, 3, 4, 5, 3, 1, 4, 9, 10
Offset: 1

Views

Author

Keywords

Examples

			Table begins
k= 0 1 2 3 4 5 6 7 8 9 10 11 12 13
n\
1| 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2| 1 2 1 2 2 2 1 2 2 2 1 2 1 2
3| 1 3 3 1 3 3 3 3 3 3 3 3 1 3
4| 1 4 2 4 3 4 4 4 1 4 4 4 3 4
5| 1 5 5 5 5 1 5 5 5 5 4 5 5 5
6| 1 6 3 2 3 6 6 6 3 4 6 6 6 6
7| 1 7 7 7 7 7 7 1 7 7 7 7 7 7
8| 1 8 4 8 2 8 4 8 7 8 8 8 4 8
9| 1 9 9 3 9 9 3 9 9 1 9 9 6 9
10| 1 10 5 10 10 2 5 10 10 10 3 10 5 10
11| 1 11 11 11 11 11 11 11 11 11 11 1 11 11
12| 1 12 6 4 9 12 4 12 12 8 6 12 6 12
13| 1 13 13 13 13 13 13 13 13 13 13 13 13 1
14| 1 14 7 14 7 14 14 2 7 14 14 14 14 14
15| 1 15 15 5 15 3 10 15 15 10 15 15 5 15
16| 1 16 8 16 4 16 8 16 10 16 8 16 12 16
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[ a[j], {j, 0, 32}]]; g[n_, m_] := f[n][[m]]; Flatten[ Table[ f[i, n - i], {n, 15}, {i, n - 1, 1, -1}]]

A111604 Consider the array T(n, m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the antidiagonal read zig-zag.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 4, 3, 2, 1, 1, 2, 1, 2, 5, 1, 1, 6, 5, 4, 3, 2, 1, 1, 1, 3, 3, 5, 3, 7, 1, 1, 8, 7, 2, 5, 4, 3, 2, 1, 1, 2, 3, 4, 1, 3, 7, 4, 9, 1, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 3, 1, 5, 6, 7, 2, 3, 5, 11, 1, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 3, 4, 5, 3, 1, 4, 9, 10, 11
Offset: 1

Views

Author

Keywords

Comments

T(n,n)=T(n,n+2)=A111627.

Examples

			Table begins
\k...0...1....2....3....4....5....6....7....8....9...10...11...12...13
n\
1| 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2| 1 2 1 2 2 2 1 2 2 2 1 2 1 2
3| 1 3 3 1 3 3 3 3 3 3 3 3 1 3
4| 1 4 2 4 3 4 4 4 1 4 4 4 3 4
5| 1 5 5 5 5 1 5 5 5 5 4 5 5 5
6| 1 6 3 2 3 6 6 6 3 4 6 6 6 6
7| 1 7 7 7 7 7 7 1 7 7 7 7 7 7
8| 1 8 4 8 2 8 4 8 7 8 8 8 4 8
9| 1 9 9 3 9 9 3 9 9 1 9 9 6 9
10| 1 10 5 10 10 2 5 10 10 10 3 10 5 10
11| 1 11 11 11 11 11 11 11 11 11 11 1 11 11
12| 1 12 6 4 9 12 4 12 12 8 6 12 6 12
13| 1 13 13 13 13 13 13 13 13 13 13 13 13 1
14| 1 14 7 14 7 14 14 2 7 14 14 14 14 14
15| 1 15 15 5 15 3 10 15 15 10 15 15 5 15
16| 1 16 8 16 4 16 8 16 10 16 8 16 12 16
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j, 0, 32}]]; g[n_, m_] := f[n][[m]];

A111583 G.f.: A(x) = ( G(x)^5 - G(x^5) - 5*x*((1-x^4)/(1-x))/(1-x^5) )/(25*x^2) where G(x) is the g.f. of A110631.

Original entry on oeis.org

1, 4, 14, 38, 93, 202, 400, 736, 1260, 2046, 3158, 4676, 6672, 9231, 12441, 16353, 21130, 26779, 33463, 41379, 50568, 61238, 73726, 88348, 104915, 124266, 146833, 172020, 200771, 233777, 270598, 310894, 356778, 407734, 462317, 523410, 591008
Offset: 0

Views

Author

Paul D. Hanna, Aug 28 2005

Keywords

Comments

A110631 is formed by selecting every 5th term of A083945; surprisingly, the self-convolution 5th power of A110631 is congruent modulo 25 to A083945, which consists entirely of numbers 1 through 5.

Crossrefs

Showing 1-10 of 10 results.