A084204 G.f. A(x) defined by: A(x)^4 consists entirely of integer coefficients between 1 and 4 (A083954); A(x) is the unique power series solution with A(0)=1.
1, 1, -1, 3, -7, 20, -58, 177, -554, 1769, -5739, 18866, -62684, 210146, -709882, 2413743, -8253995, 28366316, -97916761, 339326189, -1180068800, 4116957243, -14404398636, 50530280752, -177684095927, 626181400993, -2211215950469, 7823025701314, -27724997048327
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..1000
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
Programs
-
Maple
g:= 1: a[0]:= 1: for n from 1 to 50 do a[n]:= -floor((coeff(g^4,x,n)-1)/4); g:= g + a[n]*x^n; od: seq(a[n],n=0..50); # Robert Israel, Sep 04 2019
-
Mathematica
kmax = 30; A[x_] = Sum[a[k] x^k, {k, 0, kmax}]; coes = CoefficientList[A[x]^4 + O[x]^(kmax + 1), x]; r = {a[0] -> 1, a[1] -> 1}; coes = coes /. r; Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 4, a[k-1], Integers] // ToRules]; coes = coes /. r, {k, 3, kmax + 1}]; Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)
Comments