cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084203 G.f. A(x) defined by: A(x)^3 consists entirely of integer coefficients between 1 and 3 (A083953); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, 0, 0, 1, -1, 2, -2, 2, 0, -4, 12, -24, 38, -46, 33, 29, -176, 443, -827, 1222, -1310, 433, 2488, -8814, 19528, -33599, 44928, -37805, -17916, 168049, -463252, 921694, -1446018, 1679053, -808620, -2598482, 10515127, -24690122, 44515322, -62719429, 58496244, 10670109, -213311788, 632128236
Offset: 0

Views

Author

Paul D. Hanna, May 19 2003

Keywords

Comments

Does limit_{n ->infinity} a(n)/a(n+1) exist?

Crossrefs

Programs

  • Mathematica
    kmax = 45;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^3 + O[x]^kmax , x];
    r = {};
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 3, a[k-1], Integers] // ToRules]; coes = coes /. r, {k, 1, kmax}];
    Array[a, kmax, 0] /. r (* Jean-François Alcover, Jul 26 2018 *)

A084205 G.f. A(x) defined by: A(x)^5 consists entirely of integer coefficients between 1 and 5 (A083945); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -1, 3, -8, 24, -76, 252, -854, 2950, -10343, 36706, -131570, 475576, -1731357, 6342042, -23356185, 86421603, -321111661, 1197586539, -4481348585, 16819759474, -63302097780, 238835017492, -903165412289, 3422512973645, -12994514592311, 49425252955926
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) -> r = -0.2512525316047635 where A(r)=0.

Crossrefs

Programs

  • Mathematica
    kmax = 30;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^5 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1};
    coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 5, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax+1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)
Showing 1-2 of 2 results.