cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A084204 G.f. A(x) defined by: A(x)^4 consists entirely of integer coefficients between 1 and 4 (A083954); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -1, 3, -7, 20, -58, 177, -554, 1769, -5739, 18866, -62684, 210146, -709882, 2413743, -8253995, 28366316, -97916761, 339326189, -1180068800, 4116957243, -14404398636, 50530280752, -177684095927, 626181400993, -2211215950469, 7823025701314, -27724997048327
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) -> r = -0.269562488839799 where A(r)=0.

Crossrefs

Programs

  • Maple
    g:= 1: a[0]:= 1:
    for n from 1 to 50 do
      a[n]:= -floor((coeff(g^4,x,n)-1)/4);
      g:= g + a[n]*x^n;
    od:
    seq(a[n],n=0..50); # Robert Israel, Sep 04 2019
  • Mathematica
    kmax = 30;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^4 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1}; coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 4, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax + 1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)

A084206 G.f. A(x) defined by: A(x)^6 consists entirely of integer coefficients between 1 and 6 (A083946); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -2, 7, -27, 115, -510, 2343, -11029, 52896, -257457, 1268098, -6307546, 31633044, -159757597, 811708539, -4145882814, 21273287952, -109603172373, 566748274099, -2940175511195, 15297961574259, -79808998488751, 417373462315834
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) -> r = -0.1815238859919 where A(r)=0.

Crossrefs

Programs

  • Mathematica
    kmax = 25;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^6 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1};
    coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 6, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax + 1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)

A110631 Every 5th term of A083945 such that the self-convolution 5th power is congruent modulo 25 to A083945, which consists entirely of numbers 1 through 5.

Original entry on oeis.org

1, 1, 4, 3, 2, 4, 4, 2, 1, 5, 2, 1, 5, 1, 3, 2, 5, 3, 4, 4, 5, 4, 5, 2, 1, 5, 4, 1, 2, 5, 1, 5, 1, 1, 1, 2, 3, 4, 2, 2, 4, 3, 2, 5, 2, 3, 5, 1, 1, 2, 3, 3, 1, 1, 2, 2, 3, 4, 4, 1, 2, 1, 3, 4, 1, 4, 2, 3, 5, 4, 4, 3, 5, 3, 4, 2, 2, 4, 2, 2, 5, 3, 2, 4, 2, 5, 5, 5, 3, 5, 4, 4, 1, 3, 5, 1, 5, 5, 4, 3, 5, 2, 2, 2, 5
Offset: 0

Views

Author

Keywords

Comments

Congruent modulo 5 to A084205, where the self-convolution 5th power of A084205 equals A083945.

Crossrefs

Programs

  • PARI
    {a(n)=local(p=5,A,C,X=x+x*O(x^(p*n)));if(n==0,1, A=sum(i=0,n-1,a(i)*x^(p*i))+p*x*((1-x^(p-1))/(1-X))/(1-X^p); for(k=1,p,C=polcoeff((A+k*x^(p*n))^(1/p),p*n); if(denominator(C)==1,return(k);break)))}

Formula

a(n) = A083945(5*n) for n>=0.
G.f. satisfies: A(x^5) = G(x) - 5*x*((1-x^4)/(1-x))/(1-x^5), where G(x) is the g.f. of A083945.
G.f. satisfies: A(x)^5 = A(x^5) + 5*x*((1-x^4)/(1-x))/(1-x^5) + 25*x^2*H(x) where H(x) is the g.f. of A111583.
Showing 1-3 of 3 results.