A110630 Every 2nd term of A083954 such that the self-convolution 2nd power is congruent modulo 8 to A083954, which consists entirely of numbers 1 through 4.
1, 2, 3, 4, 1, 4, 3, 4, 3, 4, 2, 2, 4, 4, 3, 2, 2, 2, 3, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 1, 4, 1, 2, 4, 4, 1, 2, 3, 4, 4, 4, 3, 4, 2, 2, 2, 2, 1, 4, 1, 2, 3, 2, 4, 4, 1, 4, 1, 4, 2, 2, 3, 4, 2, 4, 2, 4, 3, 4, 4, 2, 4, 2, 1, 2, 4, 4, 4, 4, 1, 2, 4, 4, 2, 2, 3, 4, 1, 2, 2, 4, 1, 2, 4, 4, 3, 2, 3, 4, 1, 4, 4, 4, 3
Offset: 0
Keywords
Examples
A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + x^4 + 4*x^5 + 3*x^6 + 4*x^7 +... A(x)^2 = 1 + 4*x + 10*x^2 + 20*x^3 + 27*x^4 + 36*x^5 + 44*x^6 +... A(x)^2 (mod 8) = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 4*x^5 +... G083954(x) = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 4*x^5 + 4*x^6 +... where G083954(x) is the g.f. of A083954.
Programs
-
PARI
{a(n)=local(d=2,m=4,A=1+m*x); for(j=2,d*n, for(k=1,m,t=polcoeff((A+k*x^j+x*O(x^j))^(1/m),j); if(denominator(t)==1,A=A+k*x^j;break)));polcoeff(A,d*n)}
Formula
a(n) = A083954(2*n) for n>=0.