cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084062 Main diagonal of number array A084061.

Original entry on oeis.org

1, 1, 6, 54, 656, 10000, 182952, 3899224, 94769152, 2584929024, 78145100000, 2592261435104, 93586594074624, 3651967705305088, 153140949522798720, 6866498202750000000, 327772442129447518208, 16593897777705323921408
Offset: 0

Views

Author

Paul Barry, May 11 2003

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Round(( (n +Sqrt(n))^n + (n -Sqrt(n))^n )/2): n in [1..20]]; // G. C. Greubel, Jan 03 2020
    
  • Maple
    seq( `if`(n=0, 1, round(( (n + sqrt(n))^n + (n - sqrt(n))^n )/2)), n=0..20); # G. C. Greubel, Jan 03 2020
  • Mathematica
    Table[If[n==0, 1, Round[((n+Sqrt[n])^n + (n-Sqrt[n])^n)/2]], {n,0,20}] (* G. C. Greubel, Jan 03 2020 *)
  • PARI
    vector(21, n, if(n==0, 1, round( ( (n-1 + sqrt(n-1))^(n-1) + (n-1 - sqrt(n-1))^(n-1) )/2 )) ) \\ G. C. Greubel, Jan 03 2020
    
  • Sage
    [1]+[round(( (n +sqrt(n))^n + (n -sqrt(n))^n )/2) for n in (1..30)] # G. C. Greubel, Jan 03 2020

Formula

a(n) = ( (n + sqrt(n))^n + (n - sqrt(n))^n )/2.