cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084063 First subdiagonal of number array A084061.

Original entry on oeis.org

1, 1, 7, 63, 761, 11525, 209539, 4440527, 107374753, 2915352729, 87771145551, 2900744369039, 104369641697881, 4060189444664093, 169777979925475531, 7592652139022106975, 361563242499379729537, 18263719440778358953457
Offset: 0

Views

Author

Paul Barry, May 11 2003

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> ((n-Sqrt(n+1))^n + (n+Sqrt(n+1))^n)/2); # G. C. Greubel, Jan 09 2020
  • Magma
    [Round(((n-Sqrt(n+1))^n + (n+Sqrt(n+1))^n)/2): n in [0..20]]; // G. C. Greubel, Jan 09 2020
    
  • Maple
    seq( round(((n-sqrt(n+1))^n + (n+sqrt(n+1))^n)/2), n=0..20); # G. C. Greubel, Jan 09 2020
  • Mathematica
    Table[Round[((n+Sqrt[n+1])^n + (n-Sqrt[n+1])^n)/2], {n,0,20}] (* G. C. Greubel, Jan 09 2020 *)
  • PARI
    vector(21, n, round(((n-1-sqrt(n))^(n-1) + (n-1+sqrt(n))^(n-1))/2) ) \\ G. C. Greubel, Jan 09 2020
    
  • Sage
    [round(((n-sqrt(n+1))^n + (n+sqrt(n+1))^n)/2) for n in (0..20)] # G. C. Greubel, Jan 09 2020
    

Formula

a(n) = ((n - sqrt(n+1))^n + (n + sqrt(n+1))^n)/2.