A084068 a(1) = 1, a(2) = 2; a(2*k) = 2*a(2*k-1) - a(2*k-2), a(2*k+1) = 4*a(2*k) - a(2*k-1).
1, 2, 7, 12, 41, 70, 239, 408, 1393, 2378, 8119, 13860, 47321, 80782, 275807, 470832, 1607521, 2744210, 9369319, 15994428, 54608393, 93222358, 318281039, 543339720, 1855077841, 3166815962, 10812186007, 18457556052, 63018038201, 107578520350
Offset: 1
References
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..2608
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- D. H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448.
- Eric Weisstein's World of Mathematics, Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Crossrefs
Programs
-
Maple
a := proc (n) if `mod`(n, 2) = 1 then (1/2)*(sqrt(2) + 1)^n - (1/2)*(sqrt(2) - 1)^n else (1/2)*((sqrt(2) + 1)^n - (sqrt(2) - 1)^n)/sqrt(2) end if; end proc: seq(simplify(a(n)), n = 1..30); # Peter Bala, Mar 25 2018
-
Mathematica
a[n_] := ((Sqrt[2]+1)^n - (Sqrt[2]-1)^n) ((-1)^n(Sqrt[2]-2) + (Sqrt[2]+2))/8; Table[Simplify[a[n]], {n, 30}] (* after Paul Barry, Peter Luschny, Mar 29 2018 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^(n-1)*[1;2;7;12])[1,1] \\ Charles R Greathouse IV, Jun 20 2015
Formula
"A Diofloortin equation": n such that 2*n^2=floor(n*sqrt(2)*ceiling(n*sqrt(2))).
a(n)*a(n+3) = -2 + a(n+1)*a(n+2).
From Paul Barry, Jun 06 2006: (Start)
G.f.: x*(1+x)^2/(1-6*x^2+x^4);
a(n) = ((sqrt(2)+1)^n-(sqrt(2)-1)^n)*((sqrt(2)/8-1/4)*(-1)^n+sqrt(2)/8+1/4);
a(n) = Sum_{k=0..floor(n/2)} 2^k*(C(n,2*k)-C(n-1,2*k+1)*(1+(-1)^n)/2). (End)
From Peter Bala, Mar 23 2018: (Start)
a(2*n + 2) = a(2*n + 1) + sqrt( (1 + a(2*n + 1)^2)/2 ).
a(2*n + 1) = 2*a(2*n) + sqrt( (1 + 2*a(2*n)^2) ).
More generally,
a(2*n+2*m+1) = sqrt(2)*a(2*n) o a(2*m+1), where o is the binary operation defined above, that is,
a(2*n+2*m+1) = sqrt(2)*a(2*n)*sqrt(1 + a(2*m+1)^2) + a(2*m+1)*sqrt(1 + 2*a(2*n)^2).
sqrt(2)*a(2*(n + m)) = (sqrt(2)*a(2*n)) o (sqrt(2)*a(2*m)), that is,
a(2*n+2*m) = a(2*n)*sqrt(1 + 2*a(2*m)^2) + a(2*m)*sqrt(1 + 2*a(2*n)^2).
sqrt(1 + 2*a(2*n)^2) = A001541(n).
1 + 2*a(2*n)^2 = A055792(n+1).
a(2*n) - a(2*n-1) = A001653(n).
(1 + a(2*n+1)^2)/2 = A008844(n). (End)
Comments