A084084 Length of lists created by n substitutions k -> Range[0,1+Mod[k+1,3]] starting with {0}.
1, 3, 9, 28, 86, 265, 816, 2513, 7739, 23833, 73396, 226030, 696081, 2143648, 6601569, 20330163, 62608681, 192809420, 593775046, 1828587033, 5631308624, 17342153393, 53406819691, 164471408185, 506505428836, 1559831901918
Offset: 0
Keywords
Examples
{0}, {0,1,2}, {0,1,2,0,1,2,3,0,1}, {0,1,2,0,1,2,3,0,1,0,1,2,0,1,2,3,0,1,0,1,2,0,1,2,0,1,2,3} have lengths 1, 3, 9, 28. G.f. = 1 + 3*x + 9*x^2 + 28*x^3 + 86*x^4 + 265*x^5 + 816*x^6 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tomislav Doslic and I. Zubac, Counting maximal matchings in linear polymers, Ars Mathematica Contemporanea 11 (2016) 255-276.
- Index entries for linear recurrences with constant coefficients, signature (2,3,1).
Programs
-
Magma
[n le 3 select 3^(n-1) else 2*Self(n-1) +3*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Oct 16 2022
-
Mathematica
Length/@Flatten/@NestList[ # /. k_Integer:>Range[0, 1+Mod[k+1, 3]]&, {0}, 8] LinearRecurrence[{2,3,1}, {1,3,9}, 41] (* G. C. Greubel, Oct 16 2022 *)
-
SageMath
def A084084_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)/(1-2*x-3*x^2-x^3) ).list() A084084_list(40) # G. C. Greubel, Oct 16 2022
Formula
G.f.: (1+x)/(1-2*x-3*x^2-x^3).
a(n) = A000931(4*n + 6). - Michael Somos, Sep 18 2012
Comments