cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084115 A084113(n) minus A084114(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 2, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 3, 1, 3, 1, 3, 2, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 3, 4, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

a(n) = A084113(n) - A084114(n) = 2*A084113(n) - A032741(n) = A032741(n) - 2*A084114(n);
a(A084116(n)) = 1.

Crossrefs

Programs

Extensions

Definition fixed by Reinhard Zumkeller, Jul 31 2014

A084110 Let L(n) = ordered list of divisors of n = {d_1=1, d_2, ..., d_k=n}; set e_1=1, e_i = e_{i-1}/d_i if that is an integer otherwise e_i = e_{i-1}*d_i; then a(n) = e_k.

Original entry on oeis.org

1, 2, 3, 8, 5, 1, 7, 1, 27, 1, 11, 48, 13, 1, 1, 16, 17, 162, 19, 80, 1, 1, 23, 16, 125, 1, 1, 112, 29, 25, 31, 512, 1, 1, 1, 1944, 37, 1, 1, 25, 41, 49, 43, 176, 405, 1, 47, 48, 343, 1250, 1, 208, 53, 324, 1, 49, 1, 1, 59, 9, 61, 1, 567, 8, 1, 121, 67, 272, 1, 49, 71, 9, 73, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

a(n) = r(n,tau(n)), where r is defined as follows:
let d(n,j) = j-th divisor of n, 1 <= j <= tau(n) = A000005(n), r(n,1)=d(n,1), r(n,j) = if d(n,j) divides r(n,j-1) then r(n,j-1)/d(n,j) else r(n,j-1)*d(n,j), 1 < j <= tau(n);
p prime: a(p)=p, a(p^2)=p^3, a(p^3)=1, a(p^k)=p^A008344(k+1);
a(m)=1 iff m multiplicatively perfect: a(A007422(k))=1.
a(A084111(n)) = A084111(n). - Reinhard Zumkeller, Jul 31 2014

Examples

			Divisors of 48 = {1,2,3,4,6,8,12,16,24,48}: 1*2*3 = 6 -> 6*4 = 24 -> 24/6 = 4 -> 4*8 = 32 -> 32*12 = 384 -> 384/16 = 24 -> 24/24 = 1 -> 1*48 = a(48);
divisors of 49 = {1,7,49}: 1*7 = 7 -> 7*49 = 343 = a(49);
divisors of 50 = {1,2,5,10,25,50}: 1*2*5 = 10 -> 10/10 = 1 -> 1*25 = 25 -> 25*50 = 1250 = a(50).
		

Crossrefs

Cf. A027750, A084111 (fixed points), A084113, A084114.

Programs

  • Haskell
    a084110 = foldl (/*) 1 . a027750_row where
       x /* y = if m == 0 then x' else x*y where (x',m) = divMod x y
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
  • Mathematica
    a[n_] := Module[{d = Divisors[n], e}, e[i_] := e[i] = If[i == 1, 1, If[Divisible[e[i-1], d[[i]]], e[i-1]/d[[i]], e[i-1] d[[i]]]]; e[Length[d]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 10 2021 *)

Extensions

Corrected and extended by David Wasserman, Dec 14 2004

A084116 Numbers m such that A084115(m) = 1.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

A084113(a(n)) = A084114(a(n)) + 1.
Union of primes and multiplicatively perfect numbers (A000040, A007422).
A084115(a(n)) = 1; A066729(a(n)) = a(n).

Crossrefs

Cf. A084110, A066729, A084113, A084114, A084115, A066423 (complement).

Programs

  • Haskell
    a084116 n = a084116_list !! (n-1)
    a084116_list = filter ((== 1) . a084115) [1..]
    -- Reinhard Zumkeller, Jul 31 2014
    
  • Mathematica
    Select[Range[2, 200], PrimeQ[DivisorSigma[0, #]^DivisorSigma[0, #] + 1] &] (* Carl Najafi, Oct 19 2011 *)
  • PARI
    is(n)=isprime(n) || numdiv(n) == 4 \\ Charles R Greathouse IV, Oct 19 2015

Formula

It appears that a(n) = n such that A000005(n)^A000005(n)+1 is prime. - Carl Najafi, Oct 19 2011

Extensions

Corrected and edited by Carl Najafi, Oct 19 2011
Revised by Reinhard Zumkeller, Jul 31 2014

A084114 Number of divisions when calculating A084110(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 1, 2, 1, 2, 0, 1, 1, 2, 0, 4, 0, 1, 1, 1, 1, 2, 0, 3, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 1, 1, 1, 1, 1, 4, 0, 1, 1, 2, 0, 2, 0, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

a(n) = A000005(n) - 1 - A084113(n) = A032741(n) - A084113(n) = (A032741(n)-A084115(n))/2;
a(n) = 0 iff n is prime or a square of prime (A000430).

Crossrefs

Programs

  • Haskell
    a084114 = g 0 1 . tail . a027750_row where
       g c _ []     = c
       g c x (d:ds) = if r > 0 then g c (x * d) ds else g (c + 1) x' ds
                      where (x', r) = divMod x d
    -- Reinhard Zumkeller, Jul 31 2014
Showing 1-4 of 4 results.