cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084115 A084113(n) minus A084114(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 2, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 3, 1, 3, 1, 3, 2, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 3, 4, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

a(n) = A084113(n) - A084114(n) = 2*A084113(n) - A032741(n) = A032741(n) - 2*A084114(n);
a(A084116(n)) = 1.

Crossrefs

Programs

Extensions

Definition fixed by Reinhard Zumkeller, Jul 31 2014

A000430 Primes and squares of primes.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Also numbers n such that the product of proper divisors is < n.
See A050216 for lengths of blocks of consecutive primes. - Reinhard Zumkeller, Sep 23 2011
Numbers q > 1 such that d(q) < 4. Numbers k such that the number of ways of writing k = m + t is equal to the number of ways of writing k = r*s, where m|t and r|s. - Juri-Stepan Gerasimov, Oct 14 2017
Called multiplicatively deficient numbers by Chau (2004). - Amiram Eldar, Jun 29 2022

References

  • F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House 2000
  • F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.

Crossrefs

Programs

  • Haskell
    a000430 n = a000430_list !! (n-1)
    a000430_list = m a000040_list a001248_list where
       m (x:xs) (y:ys) | x < y = x : m xs (y:ys)
                       | x > y = y : m (x:xs) ys
    -- Reinhard Zumkeller, Sep 23 2011
    
  • Mathematica
    nn = 223; t = Union[Prime[Range[PrimePi[nn]]], Prime[Range[PrimePi[Sqrt[nn]]]]^2] (* T. D. Noe, Apr 11 2011 *)
    Module[{upto=250,prs},prs=Prime[Range[PrimePi[upto]]];Select[Join[ prs,prs^2], #<=upto&]]//Sort (* Harvey P. Dale, Oct 08 2016 *)
  • PARI
    is(n)=isprime(n) || (issquare(n,&n) && isprime(n)) \\ Charles R Greathouse IV, Sep 04 2013
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A000430(n):
        def f(x): return n+x-primepi(x)-primepi(isqrt(x))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return int(m) # Chai Wah Wu, Aug 09 2024

Formula

A084114(a(n)) = 0, see also A084110. - Reinhard Zumkeller, May 12 2003
A109810(a(n)) = 2. - Reinhard Zumkeller, May 24 2010
A010051(a(n)) + A010055(a(n))*A064911(a(n)) = 1;
A056595(a(n)) = 1. - Reinhard Zumkeller, Aug 15 2011
A032741(a(n)) = A046951(a(n)); A293575(a(n)) = 0. - Juri-Stepan Gerasimov, Oct 14 2017
The number of terms not exceeding x is N(x) ~ (x + 2*sqrt(x))/log(x) (Chau, 2004). - Amiram Eldar, Jun 29 2022

A080257 Numbers having at least two distinct or a total of at least three prime factors.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2003

Keywords

Comments

Complement of A000430; A080256(a(n)) > 3.
A084114(a(n)) > 0, see also A084110.
Also numbers greater than the square of their smallest prime-factor: a(n)>A020639(a(n))^2=A088377(a(n));
a(n)>A000430(k) for n<=13, a(n) < A000430(k) for n>13.
Numbers with at least 4 divisors. - Franklin T. Adams-Watters, Jul 28 2006
Union of A024619 and A033942; A211110(a(n)) > 2. - Reinhard Zumkeller, Apr 02 2012
Also numbers > 1 that are neither prime nor a square of a prime. Also numbers whose omega-sequence (A323023) has sum > 3. Numbers with omega-sequence summing to m are: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7). - Gus Wiseman, Jul 03 2019
Numbers n such that sigma_2(n)*tau(n) = A001157(n)*A000005(n) >= 4*n^2. Note that sigma_2(n)*tau(n) >= sigma(n)^2 = A072861 for all n. - Joshua Zelinsky, Jan 23 2025

Examples

			8=2*2*2 and 10=2*5 are terms; 4=2*2 is not a term.
From _Gus Wiseman_, Jul 03 2019: (Start)
The sequence of terms together with their prime indices begins:
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
(End)
		

Crossrefs

Programs

  • Haskell
    a080257 n = a080257_list !! (n-1)
    a080257_list = m a024619_list a033942_list where
       m xs'@(x:xs) ys'@(y:ys) | x < y  = x : m xs ys'
                               | x == y = x : m xs ys
                               | x > y  = y : m xs' ys
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Mathematica
    Select[Range[100],PrimeNu[#]>1||PrimeOmega[#]>2&] (* Harvey P. Dale, Jul 23 2013 *)
  • PARI
    is(n)=omega(n)>1 || isprimepower(n)>2
    
  • PARI
    is(n)=my(k=isprimepower(n)); if(k, k>2, !isprime(n)) \\ Charles R Greathouse IV, Jan 23 2025

Formula

a(n) = n + O(n/log n). - Charles R Greathouse IV, Sep 14 2015

Extensions

Definition clarified by Harvey P. Dale, Jul 23 2013

A084110 Let L(n) = ordered list of divisors of n = {d_1=1, d_2, ..., d_k=n}; set e_1=1, e_i = e_{i-1}/d_i if that is an integer otherwise e_i = e_{i-1}*d_i; then a(n) = e_k.

Original entry on oeis.org

1, 2, 3, 8, 5, 1, 7, 1, 27, 1, 11, 48, 13, 1, 1, 16, 17, 162, 19, 80, 1, 1, 23, 16, 125, 1, 1, 112, 29, 25, 31, 512, 1, 1, 1, 1944, 37, 1, 1, 25, 41, 49, 43, 176, 405, 1, 47, 48, 343, 1250, 1, 208, 53, 324, 1, 49, 1, 1, 59, 9, 61, 1, 567, 8, 1, 121, 67, 272, 1, 49, 71, 9, 73, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

a(n) = r(n,tau(n)), where r is defined as follows:
let d(n,j) = j-th divisor of n, 1 <= j <= tau(n) = A000005(n), r(n,1)=d(n,1), r(n,j) = if d(n,j) divides r(n,j-1) then r(n,j-1)/d(n,j) else r(n,j-1)*d(n,j), 1 < j <= tau(n);
p prime: a(p)=p, a(p^2)=p^3, a(p^3)=1, a(p^k)=p^A008344(k+1);
a(m)=1 iff m multiplicatively perfect: a(A007422(k))=1.
a(A084111(n)) = A084111(n). - Reinhard Zumkeller, Jul 31 2014

Examples

			Divisors of 48 = {1,2,3,4,6,8,12,16,24,48}: 1*2*3 = 6 -> 6*4 = 24 -> 24/6 = 4 -> 4*8 = 32 -> 32*12 = 384 -> 384/16 = 24 -> 24/24 = 1 -> 1*48 = a(48);
divisors of 49 = {1,7,49}: 1*7 = 7 -> 7*49 = 343 = a(49);
divisors of 50 = {1,2,5,10,25,50}: 1*2*5 = 10 -> 10/10 = 1 -> 1*25 = 25 -> 25*50 = 1250 = a(50).
		

Crossrefs

Cf. A027750, A084111 (fixed points), A084113, A084114.

Programs

  • Haskell
    a084110 = foldl (/*) 1 . a027750_row where
       x /* y = if m == 0 then x' else x*y where (x',m) = divMod x y
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
  • Mathematica
    a[n_] := Module[{d = Divisors[n], e}, e[i_] := e[i] = If[i == 1, 1, If[Divisible[e[i-1], d[[i]]], e[i-1]/d[[i]], e[i-1] d[[i]]]]; e[Length[d]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 10 2021 *)

Extensions

Corrected and extended by David Wasserman, Dec 14 2004

A084116 Numbers m such that A084115(m) = 1.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

A084113(a(n)) = A084114(a(n)) + 1.
Union of primes and multiplicatively perfect numbers (A000040, A007422).
A084115(a(n)) = 1; A066729(a(n)) = a(n).

Crossrefs

Cf. A084110, A066729, A084113, A084114, A084115, A066423 (complement).

Programs

  • Haskell
    a084116 n = a084116_list !! (n-1)
    a084116_list = filter ((== 1) . a084115) [1..]
    -- Reinhard Zumkeller, Jul 31 2014
    
  • Mathematica
    Select[Range[2, 200], PrimeQ[DivisorSigma[0, #]^DivisorSigma[0, #] + 1] &] (* Carl Najafi, Oct 19 2011 *)
  • PARI
    is(n)=isprime(n) || numdiv(n) == 4 \\ Charles R Greathouse IV, Oct 19 2015

Formula

It appears that a(n) = n such that A000005(n)^A000005(n)+1 is prime. - Carl Najafi, Oct 19 2011

Extensions

Corrected and edited by Carl Najafi, Oct 19 2011
Revised by Reinhard Zumkeller, Jul 31 2014

A084113 Number of multiplications when calculating A084110(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 5, 1, 4, 2, 2, 2, 6, 1, 2, 2, 5, 1, 5, 1, 4, 4, 2, 1, 6, 2, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 4, 4, 2, 5, 1, 4, 2, 5, 1, 7, 1, 2, 4, 4, 2, 5, 1, 6, 3, 2, 1, 7, 2, 2, 2, 5, 1, 7, 2, 4, 2, 2, 2, 7, 1, 4, 4, 6, 1, 5, 1, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

a(n) = A000005(n)-1-A084114(n) = A032741(n)-A084114(n) = (A032741(n)+A084115(n))/2;
a(n) = 1 iff n is prime.

Crossrefs

Programs

  • Haskell
    a084113 = f 0 1 . a027750_row where
       f c _ []     = c
       f c x (d:ds) = if r == 0 then f c x' ds else f (c + 1) (x * d) ds
                      where (x', r) = divMod x d
    -- Reinhard Zumkeller, Jul 31 2014
Showing 1-6 of 6 results.