A084130 a(n) = 8*a(n-1) - 8*a(n-2), a(0)=1, a(1)=4.
1, 4, 24, 160, 1088, 7424, 50688, 346112, 2363392, 16138240, 110198784, 752484352, 5138284544, 35086401536, 239584935936, 1635988275200, 11171226714112, 76281907511296, 520885446377472, 3556828310929408, 24287542916415488
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- L. E. Jeffery, Unit-primitive matrices
- Index entries for linear recurrences with constant coefficients, signature (8,-8).
Programs
-
Magma
[n le 2 select 4^(n-1) else 8*(Self(n-1) -Self(n-2)): n in [1..41]]; // G. C. Greubel, Oct 13 2022
-
Mathematica
LinearRecurrence[{8,-8},{1,4},30] (* Harvey P. Dale, Sep 25 2014 *)
-
PARI
{a(n)= if(n<0, 0, real((4+ 2*quadgen(8))^n))}
-
SageMath
A084130=BinaryRecurrenceSequence(8,-8,1,4) [A084130(n) for n in range(41)] # G. C. Greubel, Oct 13 2022
Formula
a(n) = (4+sqrt(8))^n/2 + (4-sqrt(8))^n/2.
G.f.: (1-4*x)/(1-8*x+8*x^2).
E.g.f.: exp(4*x)*cosh(sqrt(8)*x).
From G. C. Greubel, Oct 13 2022: (Start)
a(2*n) = 2^(3*n-1)*A002203(2*n).
a(2*n+1) = 2^(3*n+2)*A000129(2*n+1). (End)
Comments