cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084134 a(n) = 8*a(n-1) - 6*a(n-2), a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 26, 184, 1316, 9424, 67496, 483424, 3462416, 24798784, 177615776, 1272133504, 9111373376, 65258185984, 467397247616, 3347628865024, 23976647434496, 171727406285824, 1229959365679616, 8809310487721984
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Comments

Binomial transform of A005667.

Crossrefs

Programs

  • Magma
    [n le 2 select 4^(n-1) else 8*Self(n-1) -6*Self(n-2): n in [1..40]]; // G. C. Greubel, Oct 13 2022
    
  • Mathematica
    LinearRecurrence[{8,-6},{1,4},30] (* Harvey P. Dale, Nov 30 2011 *)
  • SageMath
    A084134=BinaryRecurrenceSequence(8,-6,1,4)
    [A084134(n) for n in range(41)] # G. C. Greubel, Oct 13 2022

Formula

a(n) = (4+sqrt(10))^n/2 + (4-sqrt(10))^n/2.
G.f.: (1-4*x)/(1 - 8*x + 6*x^2).
E.g.f.: exp(4*x)*cosh(sqrt(10)*x).