A084134 a(n) = 8*a(n-1) - 6*a(n-2), a(0) = 1, a(1) = 4.
1, 4, 26, 184, 1316, 9424, 67496, 483424, 3462416, 24798784, 177615776, 1272133504, 9111373376, 65258185984, 467397247616, 3347628865024, 23976647434496, 171727406285824, 1229959365679616, 8809310487721984
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-6).
Programs
-
Magma
[n le 2 select 4^(n-1) else 8*Self(n-1) -6*Self(n-2): n in [1..40]]; // G. C. Greubel, Oct 13 2022
-
Mathematica
LinearRecurrence[{8,-6},{1,4},30] (* Harvey P. Dale, Nov 30 2011 *)
-
SageMath
A084134=BinaryRecurrenceSequence(8,-6,1,4) [A084134(n) for n in range(41)] # G. C. Greubel, Oct 13 2022
Formula
a(n) = (4+sqrt(10))^n/2 + (4-sqrt(10))^n/2.
G.f.: (1-4*x)/(1 - 8*x + 6*x^2).
E.g.f.: exp(4*x)*cosh(sqrt(10)*x).
Comments