A084135 a(n) = 10*a(n-1) - 15*a(n-2), a(0)=1, a(1)=5.
1, 5, 35, 275, 2225, 18125, 147875, 1206875, 9850625, 80403125, 656271875, 5356671875, 43722640625, 356876328125, 2912923671875, 23776091796875, 194067062890625, 1584029251953125, 12929286576171875, 105532426982421875
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-15).
Crossrefs
Cf. A084134.
Programs
-
Magma
[n le 2 select 5^(n-1) else 10*Self(n-1) -15*Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 13 2022
-
Mathematica
LinearRecurrence[{10,-15},{1,5},30] (* Harvey P. Dale, Oct 10 2012 *)
-
PARI
a(n)=if(n<0,0,polsym(x^2-10*x+15,n)[1+n]/2)
-
SageMath
A084135=BinaryRecurrenceSequence(10,-15,1,5) [A084135(n) for n in range(41)] # G. C. Greubel, Oct 13 2022
Formula
a(n) = (5+sqrt(10))^n/2 + (5-sqrt(10))^n/2.
G.f.: (1-5*x)/(1 - 10*x + 15*x^2).
E.g.f.: exp(5*x)*cosh(sqrt(10)*x).
Comments