A084147 Integers that have exactly 2 representations as sums of consecutive primes.
36, 41, 60, 72, 83, 90, 100, 112, 119, 120, 138, 143, 152, 180, 187, 197, 199, 204, 210, 221, 223, 228, 251, 258, 276, 281, 300, 304, 323, 330, 372, 384, 390, 395, 401, 408, 410, 434, 439, 456, 462, 473, 480, 491, 492, 508, 533, 540, 551, 552, 558, 559, 576
Offset: 1
Keywords
Examples
36 is in the sequence because it can be written in exactly two ways as sum of consecutive primes: 17+19 and 5+7+11+13.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Sums
Programs
-
Maple
g:=sum(sum(product(x^ithprime(k),k=i..j),j=i+1..150),i=1..150): gser:=series(g,x=0,605): a:=proc(n) if coeff(gser,x^n)=2 then op(2,x^n) else fi end: seq(a(n),n=1..600); # Emeric Deutsch, Mar 30 2006 # Alternative N:= 70: # for terms up to prime(N-1)+prime(N) P:= [seq(ithprime(i),i=1..N)]: m:= P[N-1]+P[N]: S:= ListTools:-PartialSums(P): V:= Vector(m): for i from 2 while S[i] <= m do V[S[i]]:= 1 od: for i from 1 to N-2 do for j from i+2 to N while S[j]-S[i] <= m do V[S[j]-S[i]]:= V[S[j]-S[i]] + 1 od od: select(t -> V[t] = 2, [$1..m]); # Robert Israel, Feb 14 2021
-
Mathematica
With[{nn=100},Take[Sort[Select[Tally[Flatten[Table[Total/@Partition[Prime[Range[nn]],n,1],{n,2,nn}]]],#[[2]]==2&]][[All,1]],nn]] (* Harvey P. Dale, Mar 06 2020 *)
Extensions
More terms from John W. Layman, May 21 2003
Comments