cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084151 Binomial transform of a Pell convolution.

Original entry on oeis.org

0, 0, 1, 9, 62, 390, 2359, 14007, 82412, 482652, 2820061, 16457397, 95983370, 559619970, 3262267891, 19015581699, 110836005272, 646014798840, 3765295834489, 21945889348257, 127910427675542, 745517838966462
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Comments

Binomial transform of A006668. Second binomial transform of A084150.

Crossrefs

Programs

  • Magma
    [(Evaluate(ChebyshevFirst(n), 2) -3^n)/8: n in [0..40]]; // G. C. Greubel, Oct 11 2022
    
  • Mathematica
    LinearRecurrence[{9,-19,3},{0,0,1},30] (* Harvey P. Dale, Jun 06 2021 *)
  • SageMath
    [(chebyshev_T(n, 3) - 3^n)/8 for n in range(41)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = ( (3+sqrt(8))^n + (3-sqrt(8))^n - 2*3^n )/16.
E.g.f.: (1/4)*exp(3*x)*( sinh(sqrt(2)*x) )^2.
G.f.: x^2 / ( (1-3*x)*(1-6*x+x^2) ). - R. J. Mathar, Sep 27 2012
a(n) = (A001541(n) - 3^n)/8. - R. J. Mathar, Sep 27 2012
a(n) = (1/8)*(ChebyshevT(n, 3) - 3^n) = (A001541(n) - A000244(n))/8. - G. C. Greubel, Oct 11 2022