cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084173 a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4).

Original entry on oeis.org

1, 3, 5, 13, 27, 59, 121, 249, 503, 1015, 2037, 4085, 8179, 16371, 32753, 65521, 131055, 262127, 524269, 1048557, 2097131, 4194283, 8388585, 16777193, 33554407, 67108839, 134217701, 268435429, 536870883, 1073741795, 2147483617
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Original name was: A sum of generalized Jacobsthal numbers.

Programs

  • Magma
    [2^(n+1)-(2*n+1)/2-(-1)^n/2: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Mathematica
    a[n_]:=2^(n+1) - (2*n+1)/2 - (-1)^n/2; Array[a, 50, 0] (* or *)
    CoefficientList[Series[(4*x^3 - 3*x^2 + 1)/(-2*x^4 + 3*x^3 + x^2 - 3*x + 1), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{3, -1, -3, 2}, {1, 3, 5, 13}, 50] (* Stefano Spezia, Oct 08 2018 *)
  • PARI
    x='x+O('x^33); Vec((4*x^3-3*x^2+1)/(-2*x^4+3*x^3+x^2-3*x+1)) \\ Altug Alkan, Oct 08 2018

Formula

a(n) = 2^(n+1) - (2*n+1)/2 - (-1)^n/2.
G.f.: (4*x^3 - 3*x^2 + 1)/(-2*x^4 + 3*x^3 + x^2 - 3*x + 1).
a(n) = A084172(n) + A083579(n).