cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084184 Partial sums of a Jacobsthal related sequence.

Original entry on oeis.org

0, 1, 2, 7, 10, 31, 42, 127, 170, 511, 682, 2047, 2730, 8191, 10922, 32767, 43690, 131071, 174762, 524287, 699050, 2097151, 2796202, 8388607, 11184810, 33554431, 44739242, 134217727, 178956970, 536870911, 715827882, 2147483647, 2863311530, 8589934591
Offset: 0

Views

Author

Paul Barry, May 19 2003

Keywords

Comments

Partial sums of A084183.

Crossrefs

Programs

  • Maple
    A084184:=n->(5-(-1)^n)*(2^n-1)/6: seq(A084184(n), n=0..50); # Wesley Ivan Hurt, Jan 28 2017
  • Mathematica
    LinearRecurrence[{0,5,0,-4},{0,1,2,7},40] (* Harvey P. Dale, Jan 18 2015 *)
  • PARI
    concat(0, Vec(x*(1+2*x+2*x^2)/((1-x^2)*(1-4*x^2)) + O(x^40))) \\ Colin Barker, Sep 09 2016

Formula

G.f.: x*(1+2*x+2*x^2) / ((1-x^2)*(1-4*x^2)). - typo fixed by Colin Barker, Sep 09 2016
a(2*n+1) = A083420(n). a(2*n) = 2*A002450(n) = 2*A001045(2*n).
From Colin Barker, Sep 09 2016: (Start)
a(n) = (5-(-1)^n)*(2^n-1)/6.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
(End)