A084184 Partial sums of a Jacobsthal related sequence.
0, 1, 2, 7, 10, 31, 42, 127, 170, 511, 682, 2047, 2730, 8191, 10922, 32767, 43690, 131071, 174762, 524287, 699050, 2097151, 2796202, 8388607, 11184810, 33554431, 44739242, 134217727, 178956970, 536870911, 715827882, 2147483647, 2863311530, 8589934591
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-4).
Programs
-
Maple
A084184:=n->(5-(-1)^n)*(2^n-1)/6: seq(A084184(n), n=0..50); # Wesley Ivan Hurt, Jan 28 2017
-
Mathematica
LinearRecurrence[{0,5,0,-4},{0,1,2,7},40] (* Harvey P. Dale, Jan 18 2015 *)
-
PARI
concat(0, Vec(x*(1+2*x+2*x^2)/((1-x^2)*(1-4*x^2)) + O(x^40))) \\ Colin Barker, Sep 09 2016
Formula
G.f.: x*(1+2*x+2*x^2) / ((1-x^2)*(1-4*x^2)). - typo fixed by Colin Barker, Sep 09 2016
From Colin Barker, Sep 09 2016: (Start)
a(n) = (5-(-1)^n)*(2^n-1)/6.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
(End)
Comments