cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A084206 G.f. A(x) defined by: A(x)^6 consists entirely of integer coefficients between 1 and 6 (A083946); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -2, 7, -27, 115, -510, 2343, -11029, 52896, -257457, 1268098, -6307546, 31633044, -159757597, 811708539, -4145882814, 21273287952, -109603172373, 566748274099, -2940175511195, 15297961574259, -79808998488751, 417373462315834
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) -> r = -0.1815238859919 where A(r)=0.

Crossrefs

Programs

  • Mathematica
    kmax = 25;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^6 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1};
    coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 6, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax + 1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)

A084208 G.f. A(x) defined by: A(x)^8 consists entirely of integer coefficients between 1 and 8 (A083948); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -3, 15, -82, 484, -2992, 19110, -124979, 832234, -5621028, 38402783, -264858143, 1841221687, -12886279885, 90713376563, -641815393278, 4561172770669, -32542369727538, 232992967457839
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) --> r = -0.131401689761435 where A(r)=0.

Crossrefs

Programs

  • Mathematica
    kmax = 20;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^8 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1};
    coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 8, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax + 1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)

A110635 Every 7th term of A083947 such that the self-convolution 7th power is congruent modulo 49 to A083947, which consists entirely of numbers 1 through 7.

Original entry on oeis.org

1, 1, 5, 1, 1, 4, 2, 1, 1, 3, 5, 1, 2, 5, 1, 7, 6, 4, 4, 6, 4, 5, 7, 3, 4, 2, 4, 3, 3, 2, 7, 4, 6, 6, 3, 1, 1, 6, 5, 6, 6, 3, 1, 2, 5, 7, 3, 3, 7, 5, 5, 6, 4, 6, 3, 4, 2, 5, 4, 4, 7, 3, 4, 1, 5, 6, 7, 2, 2, 5, 4, 1, 4, 4, 1, 1, 4, 3, 6, 7, 6, 2, 6, 6, 2, 1, 6, 6, 1, 5, 2, 2, 5, 5, 4, 2, 3, 7, 4, 5, 1, 3, 6, 4, 4
Offset: 0

Views

Author

Keywords

Comments

Congruent modulo 7 to A084207, where the self-convolution 7th power of A084207 equals A083947.

Crossrefs

Programs

  • PARI
    {a(n)=local(p=7,A,C,X=x+x*O(x^(p*n)));if(n==0,1, A=sum(i=0,n-1,a(i)*x^(p*i))+p*x*((1-x^(p-1))/(1-X))/(1-X^p); for(k=1,p,C=polcoeff((A+k*x^(p*n))^(1/p),p*n); if(denominator(C)==1,return(k);break)))}

Formula

a(n) = A083947(7*n) for n>=0.
G.f. satisfies: A(x^7) = G(x) - 7*x*((1-x^6)/(1-x))/(1-x^7), where G(x) is the g.f. of A083947.
G.f. satisfies: A(x)^7 = A(x^7) + 7*x*((1-x^6)/(1-x))/(1-x^7) + 49*x^2*H(x) where H(x) is the g.f. of A111584.
Showing 1-3 of 3 results.