cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084211 G.f. A(x) defined by: A(x)^11 consists entirely of integer coefficients between 1 and 11 (A084066); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -4, 26, -189, 1479, -12106, 102224, -883031, 7761209, -69153920, 623018880, -5664270185, 51892998965, -478521450110, 4437418074830, -41350439060725, 386983852716405
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) --> r = -0.100000000011 where A(r)=0.

Crossrefs

Programs

  • Mathematica
    kmax = 20;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^11 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1};
    coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 11, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax + 1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)

A084209 G.f. A(x) defined by: A(x)^9 consists entirely of integer coefficients between 1 and 9 (A083949); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -3, 15, -85, 523, -3367, 22371, -152104, 1052568, -7385756, 52410754, -375382683, 2709626768, -19688989762, 143885743077, -1056748051734, 7795106129504, -57723430872280, 428923406694402
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) --> r = -0.126715878986521 where A(r)=0.

Crossrefs

Programs

  • Mathematica
    kmax = 20;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^9 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1};
    coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 9, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax + 1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)
Showing 1-2 of 2 results.