cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084223 Numerators of successive approximations to zeta(3) = Sum_{k>0} 1/k^3, using Zeilberger's formula with s=2.

Original entry on oeis.org

29, 2077, 389467, 23511309071, 250074841297, 217632439585619, 2271157731457180823, 39331108008268763851, 152552947614179997630583, 30344459362884140864563052777, 40899053923887320978111449369, 248809394545968517041811755878299, 1150743449775104391337057432898154107
Offset: 1

Views

Author

Ralf Stephan, May 19 2003

Keywords

Crossrefs

Denominators are in A084224, decimal expansion is in A002117.
Cf. A084225 (s=3).

Programs

  • GAP
    List(List([1..10],n->Sum([1..n],k->(1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*Binomial(3*k,k)*Binomial(2*k,k)*k^3))),NumeratorRat); # Muniru A Asiru, Oct 09 2018
  • Magma
    [Numerator((&+[(1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*Binomial(3*k,k)*Binomial(2*k,k)*k^3): k in [1..n]])): n in [1..30]]; // G. C. Greubel, Oct 08 2018
    
  • Maple
    a:=n->add((1/4)*(-1)^(k-1)*(56*k^2-32*k+5)/((2*k-1)^2*binomial(3*k,k)*binomial(2*k,k)*k^3),k=1..n): seq(numer(a(n)),n=1..10); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[Numerator[Sum[(1/4)*(-1)^(k - 1)*(56*k^2 - 32*k + 5)/((2*k - 1)^2* Binomial[3*k, k]*Binomial[2*k, k]*k^3), {k, 1, n}]], {n, 1, 30}] (* G. C. Greubel, Oct 08 2018 *)
  • PARI
    for(n=1,15,print1(numerator(sum(k=1,n,1/4*(-1)^(k-1)*(56*k^2 -32*k+5)/(2*k-1)^2/binomial(3*k,k)/binomial(2*k,k)/k^3)), ","))
    

Formula

a(n) = numerator( Sum_{k=1..n} (1/4)*(-1)^(k-1)*(56*k^2 - 32*k + 5)/((2*k - 1)^2*binomial(3*k, k)*binomial(2*k, k)*k^3) ). - G. C. Greubel, Oct 08 2018