cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084229 Let b(1)=1, b(2)=2, b(n) = sum of digits of b(1)+b(2)+b(3)+...+b(n-1), sequence gives values of n such that b(n)=3.

Original entry on oeis.org

3, 5, 7, 9, 17, 19, 27, 29, 87, 95, 97, 159, 591, 599, 601, 663, 1143, 4609, 4617, 4619, 4681, 5161, 8993, 13165, 38277, 38279, 38341, 38821, 42653, 46825, 75043, 79223, 327015, 327023, 327025, 327087, 327567, 331399, 335571, 363789, 367969, 642981, 647153, 2847029, 2847031, 2847093, 2847573
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Comments

The {b(n)} sequence is A084228. - N. J. A. Sloane, Jun 26 2014
Note that b(k)==0 (mod 3) for n>2.

Crossrefs

Programs

  • Mathematica
    k = 3; lst = {}; a = 3; While[k < 100000001, b = a + Total@ IntegerDigits@ a; If[b == a + 3, AppendTo[lst, k]; Print@ k]; a = b; k++]; lst (* Robert G. Wilson v, Jun 27 2014 *)
  • PARI
    upto(n)={my(L=List(), s=3, k=3); while(k<=n, my(t=sumdigits(s)); if(t==3, listput(L,k)); s+=t; k++); Vec(L)} \\ Andrew Howroyd, Oct 16 2024

Formula

Conjecture : a(n)/n^3 is bounded.

Extensions

a(23) onward from Robert G. Wilson v, Jun 27 2014