cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084263 a(n) = (-1)^n/2+(n^2+n+1)/2.

Original entry on oeis.org

1, 1, 4, 6, 11, 15, 22, 28, 37, 45, 56, 66, 79, 91, 106, 120, 137, 153, 172, 190, 211, 231, 254, 276, 301, 325, 352, 378, 407, 435, 466, 496, 529, 561, 596, 630, 667, 703, 742, 780, 821, 861, 904, 946, 991, 1035, 1082, 1128, 1177, 1225, 1276, 1326, 1379, 1431
Offset: 0

Views

Author

Paul Barry, May 31 2003

Keywords

Comments

Old name was "Modified triangular numbers".
Starting with offset 1 = row sums of an infinite lower triangular matrix with alternate columns of (1, 3, 5, 7, ...) and (1, 0, 0, 0, ...) (see example). - Gary W. Adamson, May 14 2010

Examples

			From _Gary W. Adamson_, May 14 2010: (Start)
First few rows of the triangle with row sums = A084263 =
1;
3, 1;
5, 0, 1;
7, 0, 3, 1;
9, 0, 5, 0, 1;
11, 0, 7, 0, 3, 1;
...
Example: a(4) = 11 = (7 + 0 + 3 + 1). (End)
		

Crossrefs

Partial sums of A004442.

Programs

Formula

E.g.f.: cosh(x)+exp(x)*(x+x^2/2).
a(n) = Sum_{k=0..n} k+(-1)^k.
a(n) = A000217(n)+A059841(n). Partial sums are A084570. Binomial transform is A084264.
G.f.: (1-x+2*x^2)/((1-x)^3*(1+x)). - R. J. Mathar, Apr 02 2008
a(0) = 1, a(n) = n^2 - a(n-1) + 1 for n >= 1. - Richard R. Forberg, Jun 05 2013
a(n) = 1 + floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) + a(n+1) = A002522(n+1). - R. J. Mathar, May 21 2018
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - Wesley Ivan Hurt, Dec 23 2021

Extensions

Name changed by Wesley Ivan Hurt, Dec 23 2021