A084317 Concatenation of the prime factors of n, in increasing order.
0, 2, 3, 2, 5, 23, 7, 2, 3, 25, 11, 23, 13, 27, 35, 2, 17, 23, 19, 25, 37, 211, 23, 23, 5, 213, 3, 27, 29, 235, 31, 2, 311, 217, 57, 23, 37, 219, 313, 25, 41, 237, 43, 211, 35, 223, 47, 23, 7, 25, 317, 213, 53, 23, 511, 27, 319, 229, 59, 235, 61, 231, 37, 2, 513, 2311, 67
Offset: 1
Examples
a(1) = 0 since 1 has no prime factors to concatenate. n = 2520 = 2*2*2*3*3*5*7; prime factor set = {2,3,5,7}, so a(2520) = 2357.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:= n-> parse(cat(`if`(n=1, 0, sort([factorset(n)[]])[]))): seq(a(n), n=1..100); # Alois P. Heinz, Dec 06 2014
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] lf[x_] := Length[FactorInteger[x]] nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] conc[x_] := Fold[nd, 0, Flatten[IntegerDigits[ba[x]], 1]] Table[conc[w], {w, 1, 128}] {0}~Join~Table[FromDigits@ Flatten@ IntegerDigits@ Map[First, FactorInteger@ n], {n, 2, 67}] (* Michael De Vlieger, May 02 2016 *)
-
PARI
A084317(n)=if(n>1,eval(concat(apply(t->Str(t),factor(n)[,1]~)))) \\ Unfortunately up to PARI version 2.7.1 at least, "Str" cannot be applied as a closure (= function), but Str = Str() = "". - M. F. Hasler, Oct 22 2014
Formula
a(n) = a(squarefree kernel of n) = a(n^k) for any power k >= 1.
Extensions
Edited by M. F. Hasler, Oct 21 2014
Comments