cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A084318 Iterate function described in A084317 if started at initial value n until reaching a fixed point.

Original entry on oeis.org

0, 2, 3, 2, 5, 23, 7, 2, 3, 5, 11, 23, 13, 3, 1129, 2, 17, 23, 19, 5, 37, 211, 23, 23, 5, 3251, 3, 3, 29, 547, 31, 2, 311, 31397, 1129, 23, 37, 373, 313, 5, 41, 379, 43, 211, 1129, 223, 47, 23, 7, 5, 317, 3251, 53, 23, 773, 3, 1129, 229, 59, 547, 61, 31237, 37, 2, 1129, 2311
Offset: 1

Views

Author

Labos Elemer, Jun 16 2003

Keywords

Comments

Conjecture: fixed point always exists.
Some initial values capriciously provide very large prime fixed-points. This behavior is illustrated in A084319 for initial value n=91.
Unlike the related home primes A037274, the trajectory of numbers in this procedure is not strictly increasing. Of the 8770 numbers < 10000 that have trajectories (that is, that are neither 1 nor prime) 3727 decrease at least once before reaching 30 digits. A sequence with no decreases is twice as likely to not terminate before 30 digits (10.0%) as one that has at least one decrease (4.8%). - Christian N. K. Anderson, May 04 2013

Examples

			a(0)=0 since no prime factors to concatenate;
a[p^j]=p for p prime(powers);
n=95=519: fixed-point list is {95,519,3173,19167,36389},
so a(95)=36389, a prime.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] lf[x_] := Length[FactorInteger[x]] nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] conc[x_] := Fold[nd, 0, Flatten[IntegerDigits[ba[x]], 1]] Table[FixedPoint[conc, w], {w, 1, 90}] Table[conc[w], {w, 1, 128}]

A084319 Orbit of 91 under function described in A084317.

Original entry on oeis.org

91, 713, 2331, 3737, 37101, 383149, 1329473, 10912197, 328312853, 1129846623, 3735159117, 31245053039, 173977184859, 3293176308321, 319269241788861, 371325123869195203, 1278647733810375857, 1665622037676698019, 31742715741254857303, 56627509560552923867
Offset: 0

Views

Author

Labos Elemer, Jun 16 2003

Keywords

Comments

This sequence takes 64 steps to reach a prime (which implies A343156(91)=64). - N. J. A. Sloane, Apr 07 2021

Examples

			a(29) = 19797186041838357425713338412621, the 29th iterate.
		

References

  • Eric Angelini, W. Edwin Clark, Hans Havermann, Frank Stevenson, Allan C. Wechsler, and others, Postings to Math Fun mailing list, April 2021.

Crossrefs

Programs

  • Mathematica
    NestList[FromDigits@ Flatten@ IntegerDigits@ Map[First, FactorInteger@ #] &, 91, 17] (* Michael De Vlieger, Mar 25 2017 *)

Extensions

Example corrected by Rémy Sigrist, Apr 07 2021

A343156 Starting at n, a(n) = number of iterations of the map x -> A084317(x) (concatenate distinct prime factors of x) required to reach a prime, or -1 if no prime is ever reached.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 2, 4, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 4, 1, 2, 0, 2, 0, 1, 1, 5, 3, 1, 0, 2, 1, 2, 0, 2, 0, 1, 4, 1, 0, 1, 1, 2, 1, 4, 0, 1, 2, 2, 2, 1, 0, 2, 0, 3, 1, 1, 3, 1, 0, 5, 3, 1, 0, 1, 0, 2, 4, 2, 2, 2, 0, 2, 1, 1, 0, 2, 3, 2, 3, 1, 0, 2, 64, 1, 1, 2, 4, 1, 0, 2, 1, 2
Offset: 2

Views

Author

N. J. A. Sloane, Apr 07 2021

Keywords

Comments

Judging by the behavior of similar sequences, it is likely that almost all values of a(n) are -1. n = 407 (see A343157) seems to be the first open case.

Examples

			10 = 2*5 -> 25 = 5^2 -> 5, prime, taking two steps, so a(10)=2.
a(91) = 64: see A084319.
		

References

  • Eric Angelini, W. Edwin Clark, Hans Havermann, Frank Stevenson, Allan C. Wechsler, and others, Postings to Math Fun mailing list, April 2021.

Crossrefs

See A343158 for when k first appears.

A249125 Composite numbers which are a multiple of the concatenation of their prime factors A084317.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 50, 64, 81, 100, 121, 125, 128, 169, 200, 243, 250, 256, 289, 343, 361, 400, 500, 512, 529, 625, 729, 800, 841, 961, 1000, 1024, 1250, 1331, 1369, 1600, 1681, 1849, 2000, 2048, 2187, 2197, 2209, 2401, 2500, 2809, 3125, 3200, 3481, 3721, 4000, 4096, 4489, 4913, 5000, 5041, 5329, 6241, 6250, 6400
Offset: 1

Views

Author

M. F. Hasler, Oct 21 2014

Keywords

Comments

Prime numbers are excluded since they trivially satisfy the condition.
Multiplicity of the prime factors is ignored.
Among the first 10000 terms, the 182 which are not prime powers are of the form 2^h * 5^k. - Giovanni Resta, May 29 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[6400], CompositeQ[#] &&  Mod[#, FromDigits@ Flatten[ IntegerDigits /@ First /@ FactorInteger@#]] == 0 &] (* Giovanni Resta, May 29 2017 *)
  • PARI
    for(n=2,9999,isprime(n)||n%A084317(n)||print1(n","))

A343157 Trajectory of 407 under the map x -> A084317(x).

Original entry on oeis.org

407, 1137, 3379, 31109, 132393, 344131, 1731653, 71143523, 115771019, 7133141039, 18152375353, 723112747673, 1938058565667, 372411163329269, 646991575604859, 3500960117162747, 19920988418382133, 479222853318661919, 3877130279948783893, 71942196909541476259, 7170749184914732550379
Offset: 0

Views

Author

Hans Havermann, Apr 07 2021

Keywords

Comments

It is not known if any a(n) is a prime (see discussion in A343156). - N. J. A. Sloane, Apr 07 2021

References

  • Eric Angelini, W. Edwin Clark, Hans Havermann, Frank Stevenson, Allan C. Wechsler, and others, Postings to Math Fun mailing list, April 2021.

Crossrefs

A084323 Fixed points reached when prime-factor-concatenation function [A084317] is started at n!.

Original entry on oeis.org

0, 2, 23, 23, 547, 547, 2357, 2357, 2357, 2357, 4359293547691, 4359293547691, 325798243129564339, 325798243129564339, 325798243129564339, 325798243129564339, 3947306373286437248759663633906484193454376823
Offset: 1

Views

Author

Labos Elemer, Jun 20 2003

Keywords

Examples

			n=11: 11!=256.81.25.7.11; a(11)=iter[concatenate[{2,3,5,7,11}]] =A084318[39916800]; the list of iteration:
{39916800, 235711, 7151223, 34495309, 41841349, 1116722777, 1958774883, 313113444469, 744730492067, 4359293547691}
at each step the ordered prime factors of previous term are concatenated.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] q[x_] := Apply[Times, Table[Prime[w], {w, 1, x}]] lf[x_] := Length[FactorInteger[x]] nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] coc[x_] := Fold[nd, 0, Flatten[IntegerDigits[ba[x]], 1]] Table[FixedPoint[coc, q[w]], {w, 1, 7}]

Formula

a(n)=A084318[A000142(n)]=A084318[n! ]

A085307 a(1) = 1; for n > 1, concatenate distinct prime factors of n in decreasing order.

Original entry on oeis.org

1, 2, 3, 2, 5, 32, 7, 2, 3, 52, 11, 32, 13, 72, 53, 2, 17, 32, 19, 52, 73, 112, 23, 32, 5, 132, 3, 72, 29, 532, 31, 2, 113, 172, 75, 32, 37, 192, 133, 52, 41, 732, 43, 112, 53, 232, 47, 32, 7, 52, 173, 132, 53, 32, 115, 72, 193, 292, 59, 532, 61, 312, 73, 2, 135, 1132, 67
Offset: 1

Views

Author

Labos Elemer, Jun 27 2003

Keywords

Comments

n and a(n) have the same parity.

Examples

			m = 100 = 2*2*5*5 -> {2,5} -> {5,2} -> 52 = a(100);
a(510510) = 1713117532, while A084317(510510) = 2357111317.
		

Crossrefs

In A084317 the order of factors is increasing.

Programs

  • Maple
    with(numtheory):
    a:= n-> parse(cat(`if`(n=1, 1, sort([factorset(n)[]], `>`)[]))):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 02 2016
  • Mathematica
    f[n_] := FromDigits[ Flatten[ IntegerDigits /@ Reverse[ Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]]]]; Table[ f[n], {n, 1, 70}]
    Table[FromDigits[Flatten[IntegerDigits/@Reverse[FactorInteger[n][[All, 1]]]]],{n,90}] (* Harvey P. Dale, Oct 10 2017 *)

Formula

Algorithm:
1. factorize n;
2. order prime factors by decreasing size;
3. concatenate prime factors and interpret the result as a decimal number.

Extensions

Edited by Robert G. Wilson v, Jul 15 2003

A192137 Numbers m such that their concatenation of prime divisors are palindromic numbers.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 16, 25, 27, 32, 39, 49, 64, 69, 81, 101, 117, 119, 121, 125, 128, 129, 131, 151, 159, 181, 191, 207, 219, 243, 249, 256, 259, 313, 329, 339, 343, 351, 353
Offset: 1

Views

Author

Jaroslav Krizek, Jun 24 2011

Keywords

Comments

The corresponding values of palindromic concatenation in A192138. Superset of A002385 (palindromic primes), A192139 and A192140.

Examples

			Concatenation of prime divisors of 39 = 3 * 13 is 313 (palindromic number).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,500],PalindromeQ[FromDigits[Flatten[IntegerDigits/@ FactorInteger[ #][[All,1]]]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 02 2017 *)

A192139 Powers p^m, m >= 0, of palindromic primes p (A002385).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 25, 27, 32, 49, 64, 81, 101, 121, 125, 128, 131, 151, 181, 191, 243, 256, 313, 343, 353, 373, 383, 512, 625, 727, 729, 757, 787, 797, 919, 929, 1024, 1331, 2048, 2187, 2401, 3125, 4096, 6561, 8192, 10201, 10301, 10501, 10601, 11311, 11411, 12421, 12721
Offset: 1

Views

Author

Jaroslav Krizek, Jun 24 2011

Keywords

Comments

Superset of A002385 and A084092. Subset of A192137.

Crossrefs

Programs

Extensions

Missing term 625 inserted and more terms added by M. F. Hasler, May 11 2015

A085308 Iterate function described in A085308 (= reverse concatenation of prime factors); a(n) is either 1# the fixed point[=prime] if it exists at all: 2# a(2k)=1 labels that no convergence with most even initial values, in contrary mostly rapid divergence is the case; 3# a(n)=0 if n=1 or if the iteration results in nontrivial attractor with cycle length larger than one.

Original entry on oeis.org

0, 2, 3, 2, 5, 2, 7, 2, 3, 1, 11, 2, 13, 2, 53, 2, 17, 2, 19, 1, 73, 2, 23, 2, 5, 1, 3, 2, 29, 1, 31, 2, 113, 2, 53, 2, 37, 2, 197, 1, 41, 1, 43, 2, 53, 1, 47, 2, 7, 1, 173, 1, 53, 2, 41113, 2, 193, 1, 59, 1, 61, 1, 73, 2, 53, 1, 67, 1, 233, 1, 2, 73, 1, 53, 1, 197, 1, 79, 1, 3, 1, 83, 1, 53, 1
Offset: 1

Views

Author

Labos Elemer, Jun 27 2003

Keywords

Examples

			n=even: remains even: m = 100 = 2*2*5*5 -> {2,5} -> {5,2} -> 52 = a(100);
n = 2^i*3^j: a(n)=2 since iteration list is {n,32,2}; these
are the known convergent even cases of initial value.
n=143: a(143) = 44864859110711 because the iteration list is
{143, 1311, 23193, 8593, 66113, 388917, 547793, 2273241, 55311373, 989474313, 8914183373, 84859143973, 528059391607, 44864859110711};
a(n) = 0 for n = 213, 323, 639, 713 ending in {713, 3123, 3473, 15123}; terminal orbit of length = 4.
All possible cases occur: fixed point, divergence, terminal cycle.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] lf[x_] := Length[FactorInteger[x]] nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] rec[x_] := Fold[nd, 0, Flatten[IntegerDigits[Reverse[ba[x]]], 1]] Table[rec[w], {w, 1, 128}]

Formula

Algorithm:
1. factorize n;
2. arrange prime factors by decreasing size;
3. concatenate prime factors and interpret the result as a decimal number.
Showing 1-10 of 23 results. Next