cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A085309 Initial values providing nontrivial cyclic attractor when function defined in A085307 is iterated.

Original entry on oeis.org

213, 323, 639, 713
Offset: 1

Views

Author

Labos Elemer, Jun 27 2003

Keywords

Examples

			n=213 gives {213,713,3123,3473,15123,713},
n=323 gives {323,1917,713,3123,3473,15123,713},
n=639 gives {639,713,3123,3473,15123,713}.
		

Crossrefs

Formula

Algorithm: 1# factorize n; 2# arrange prime-factors by decreasing size; 3# concatenate prime factors and interpret the result as decimal number.Iterate 1#, 2#, 3#.

A084685 a(n) is the least x such that length of fixed-point-list when function-A085307[] was iterated and started at a(n) equals n.

Original entry on oeis.org

2, 4, 6, 14, 22, 115, 55, 105, 155, 145, 341, 501, 489, 143, 437, 301, 395, 665
Offset: 1

Views

Author

Labos Elemer, Jul 16 2003

Keywords

Examples

			Some lists of iterated values started at a(n):
n=1: a(1)=first prime; n=2: a(2)=first true prime factor;
n=3: a(3)=first 2^j.3^i number, that is 6;
n=5: {22,112,72,32,2}
n=12: length=a(12); iv=501; fixed-point=1354674597313; list as follows
{501, 1673, 2397, 47173, 293237, 2571637, 23593109, 273116353, 522211523, 8866073119, 57914987307, 1354674597313}
		

Crossrefs

A084796 Replace n with concatenation of its prime factors in decreasing order.

Original entry on oeis.org

1, 2, 3, 22, 5, 32, 7, 222, 33, 52, 11, 322, 13, 72, 53, 2222, 17, 332, 19, 522, 73, 112, 23, 3222, 55, 132, 333, 722, 29, 532, 31, 22222, 113, 172, 75, 3322, 37, 192, 133, 5222, 41, 732, 43, 1122, 533, 232, 47, 32222, 77, 552, 173, 1322, 53, 3332, 115, 7222, 193, 292
Offset: 1

Views

Author

N. J. A. Sloane, Jul 19 2003

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> parse(cat(`if`(n=1, 1,
        sort([seq(i[1]$i[2], i=ifactors(n)[2])], `>`)[]))):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 02 2016
  • Mathematica
    Table[FromDigits[Flatten[Table[#[[1]],#[[2]]]&/@ Reverse[ FactorInteger[ n]]]],{n,60}] (* Harvey P. Dale, Aug 29 2016 *)

Extensions

More terms from Christopher N. Swanson (cswanson(AT)ashland.edu), Jul 22 2003

A302170 Irregular triangle T(n,k) read by rows: first row is 1, n-th row (n > 1) lists distinct prime factors of n in decreasing order.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 2, 7, 2, 3, 5, 2, 11, 3, 2, 13, 7, 2, 5, 3, 2, 17, 3, 2, 19, 5, 2, 7, 3, 11, 2, 23, 3, 2, 5, 13, 2, 3, 7, 2, 29, 5, 3, 2, 31, 2, 11, 3, 17, 2, 7, 5, 3, 2, 37, 19, 2, 13, 3, 5, 2, 41, 7, 3, 2, 43, 11, 2, 5, 3, 23, 2, 47, 3, 2, 7, 5, 2, 17, 3, 13, 2, 53, 3, 2, 11, 5, 7, 2, 19, 3, 29, 2, 59, 5, 3, 2, 61, 31, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 02 2018

Keywords

Examples

			The irregular triangle begins:
1:  {1}
2:  {2}
3:  {3}
4:  {2}
5:  {5}
6:  {3, 2}
7:  {7}
8:  {2}
9:  {3}
10: {5, 2}
11: {11}
12: {3, 2}
		

Crossrefs

Cf. A001221 (row lengths), A006530, A008472 (row sums), A020639, A027746, A027748 (another version), A027750, A056538, A085307, A238689.

Programs

  • Haskell
    a302170 n k = a302170_tabl !! (n-1) !! (k-1)
    a302170_tabl = map a302170_row [1..]
    a302170_row = reverse . a027748_row
    -- Brian Chess, Sep 19 2022
  • Mathematica
    Flatten[Table[Reverse[FactorInteger[n][[All, 1]]], {n, 1, 62}]]

Formula

T(n,1) = A006530(n).
T(n,A001221(n)) = A020639(n).

A251363 Numbers n such that n is the concatenation of distinct prime factors of phi(n), in decreasing order.

Original entry on oeis.org

237532, 832332, 82953292, 423238803752
Offset: 1

Views

Author

Jahangeer Kholdi, Dec 03 2014

Keywords

Comments

Numbers n such that n = A085307(A000010(n)). - Michel Marcus, Dec 06 2014

Examples

			237532 is in the sequence since phi(237532)=23*7*5*3^2*2^4,
832332 is in the sequence since phi(832332)=83*23*3^2*2^4, and
82953292 is in the sequence since phi(82953292)=829*53*29*2^5.
		

Crossrefs

Programs

  • Mathematica
    a251363[n_Integer] :=
    Rest@ Select[Range[n], # == FromDigits[Flatten@ IntegerDigits[
    Sort[First@ Transpose@ FactorInteger[EulerPhi[#]], Greater]]] &]; a251363[10^6] (* Michael De Vlieger, Dec 03 2014 *)

Extensions

a(4) from Max Alekseyev, Feb 10 2025

A084686 Take n-th prime p(n), rewrite it with digits in decreasing order to get b(n), then a(n)=(b(n)-p(n))/9.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 6, 8, 1, 7, 0, 4, 0, 0, 3, 0, 4, 0, 1, 0, 0, 2, 0, 1, 0, 1, 23, 67, 89, 22, 66, 20, 66, 88, 88, 40, 66, 52, 66, 62, 88, 70, 80, 82, 86, 88, 0, 11, 55, 77, 11, 77, 20, 30, 55, 41, 77, 50, 55, 60, 61, 71, 47, 0, 2, 46, 0, 44, 44, 66, 20, 66, 44, 40, 66, 50, 66, 64, 1, 59, 58
Offset: 1

Views

Author

Zak Seidov, Jun 30 2003

Keywords

Examples

			a(7)=6 because p(7)=17, b(n)=71 and (71-17)/9=6.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local p,L,i;
      p:= ithprime(n);
      L:= sort(convert(p,base,10));
      (add(10^(i-1)*L[i],i=1..nops(L))-p)/9
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 26 2019
  • Mathematica
    Table[ -Prime[n]-FromDigits[Sort[ -IntegerDigits[Prime[n]]]], {n, 1, 100}]

Formula

a(n) = A283001(A000040(n)). - Robert Israel, Nov 26 2019

A379137 Numbers k such that a nonzero proper substring of the concatenation, in decreasing order, of the prime factors of k (without multiplicity) is divisible by k.

Original entry on oeis.org

66, 95, 132, 995, 9995, 18733, 85713, 93115, 131131, 197591, 316406, 380627, 632812, 999995, 2897105, 4285713, 7231913, 8691315, 58730137, 99999995, 169035711, 507107133, 3005755566, 4870313015, 6011511132, 9023163631, 9091190911
Offset: 1

Views

Author

Jean-Marc Rebert, Dec 15 2024

Keywords

Comments

507107133, 4870313015, and all numbers of the form 5*A055558(k), k>=1, are terms (cf. A378950). - Michael S. Branicky, Dec 16 2024

Examples

			66 is a term as 66 = 2 * 3 * 11 -> 1132 contains the substring 132, which is equal to 2 * 66 and is divisible by 66.
		

Crossrefs

Extensions

a(19)-a(20) from Michael S. Branicky, Dec 16 2024
a(21)-a(22) from Jean-Marc Rebert, Dec 16 2024
Showing 1-7 of 7 results.