cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084371 Squarefree kernels of powerful numbers (A001694).

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 3, 2, 6, 7, 2, 6, 3, 10, 6, 11, 5, 2, 6, 13, 14, 10, 6, 15, 3, 2, 6, 17, 6, 7, 19, 14, 10, 6, 21, 22, 10, 2, 23, 6, 5, 6, 15, 26, 3, 14, 10, 29, 6, 30, 31, 22, 6, 10, 2, 33, 15, 6, 34, 35, 6, 21, 11, 26, 37, 14, 38, 39, 14, 10, 41, 6, 42, 30, 43, 22, 6, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Examples

			A001694(11) = 64 = 2^6 -> a(11) = 2,
A001694(12) = 72 = 2^3 * 3^2 -> a(12) = 2*3 = 6,
A001694(13) = 81 = 3^4 -> a(13) = 3.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; Do[f = FactorInteger[n]; If[Min @ f[[;;, 2]] > 1, AppendTo[s, Times @@ f[[;;, 1]]]], {n, 2, 10^4}]; s (* Amiram Eldar, Aug 22 2019 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    lista(nn) = apply(x->rad(x), select(x->ispowerful(x), [1..nn])); \\ Michel Marcus, Aug 22 2019
    
  • Python
    from math import prod, isqrt
    from sympy import mobius, integer_nthroot, primefactors
    def A084371(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l, j = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0, isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return prod(primefactors(bisection(f,n,n))) # Chai Wah Wu, Sep 13 2024

Formula

a(n) = A007947(A001694(n)).
From Amiram Eldar, May 13 2023: (Start)
Sum_{A001694(k) < x} a(k) = (1/2) * x + o(x) (Jakimczuk, 2017). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/zeta(3/2))^2/2 = 0.1058641473... . (End)