A084371 Squarefree kernels of powerful numbers (A001694).
1, 2, 2, 3, 2, 5, 3, 2, 6, 7, 2, 6, 3, 10, 6, 11, 5, 2, 6, 13, 14, 10, 6, 15, 3, 2, 6, 17, 6, 7, 19, 14, 10, 6, 21, 22, 10, 2, 23, 6, 5, 6, 15, 26, 3, 14, 10, 29, 6, 30, 31, 22, 6, 10, 2, 33, 15, 6, 34, 35, 6, 21, 11, 26, 37, 14, 38, 39, 14, 10, 41, 6, 42, 30, 43, 22, 6, 10
Offset: 1
Keywords
Examples
A001694(11) = 64 = 2^6 -> a(11) = 2, A001694(12) = 72 = 2^3 * 3^2 -> a(12) = 2*3 = 6, A001694(13) = 81 = 3^4 -> a(13) = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Rafael Jakimczuk, The kernel of powerful numbers, International Mathematical Forum, Vol. 12, No. 15 (2017), pp. 721-730, Remark 2.5, p. 729.
Programs
-
Mathematica
s = {1}; Do[f = FactorInteger[n]; If[Min @ f[[;;, 2]] > 1, AppendTo[s, Times @@ f[[;;, 1]]]], {n, 2, 10^4}]; s (* Amiram Eldar, Aug 22 2019 *)
-
PARI
rad(n) = factorback(factorint(n)[, 1]); \\ A007947 lista(nn) = apply(x->rad(x), select(x->ispowerful(x), [1..nn])); \\ Michel Marcus, Aug 22 2019
-
Python
from math import prod, isqrt from sympy import mobius, integer_nthroot, primefactors def A084371(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, l, j = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0, isqrt(x) while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) return c+l return prod(primefactors(bisection(f,n,n))) # Chai Wah Wu, Sep 13 2024
Formula
From Amiram Eldar, May 13 2023: (Start)
Sum_{A001694(k) < x} a(k) = (1/2) * x + o(x) (Jakimczuk, 2017). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/zeta(3/2))^2/2 = 0.1058641473... . (End)