A084381 a(n) = n^3 + 5.
5, 6, 13, 32, 69, 130, 221, 348, 517, 734, 1005, 1336, 1733, 2202, 2749, 3380, 4101, 4918, 5837, 6864, 8005, 9266, 10653, 12172, 13829, 15630, 17581, 19688, 21957, 24394, 27005, 29796, 32773, 35942, 39309, 42880, 46661, 50658, 54877, 59324, 64005
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Cino Hilliard, Proof that a cube plus 7 cannot be a square
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n^3+5: n in [0..50]]; // Vincenzo Librandi, Jun 09 2016
-
Mathematica
Table[n^3 + 5, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
-
PARI
a(n) = n^3 + 5;
Formula
G.f.: (5 - 14*x + 19*x^2 - 4*x^3)/(1 - x)^4. - Vincenzo Librandi, Jun 09 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Jun 09 2016
Extensions
Offset 0 and a(0) = 5 by Vincenzo Librandi, Jun 09 2016