A084400 a(1) = 1; for n>1, a(n) = smallest number that does not divide the product of all previous terms.
1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
PARI
find(pv)=k = 1; while (! (pv % k), k++); return (k); lista(nn) = print1(pv=1, ", "); for (i=1, nn, nv = find(pv); pv *= nv; print1(nv, ", ")) \\ Michel Marcus, Aug 12 2015
-
PARI
A209229(n)=if(n%2, n==1, isprimepower(n)) is(n)=A209229(isprimepower(n)) || n==1 \\ Charles R Greathouse IV, Oct 19 2015
-
Python
from sympy import primepi, integer_nthroot def A084400(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n-1+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Mar 25 2025
Extensions
More terms from Patrick De Geest, Jun 05 2003
Comments